552 research outputs found

    Comparison of chloroquine, sulfadoxine/pyrimethamine, mefloquine and mefloquine-artesunate for the treatment of falciparum malaria in Kachin State, North Myanmar.

    Get PDF
    Multi-drug resistant falciparum malaria is widespread in Asia. In Thailand, Cambodia and Vietnam the national protocols have changed largely to artesunate combined treatment regimens but elsewhere in East and South Asia chloroquine (CQ) and sulfadoxine-pyrimethamine (SP) are still widely recommended by national malaria control programmes. In Kachin State, northern Myanmar, an area of low seasonal malaria transmission, the efficacy of CQ (25 mg base/kg) and SP (1.25/25 mg/kg), the nationally recommended treatments at the time, were compared with mefloquine alone (M; 15 mg base/kg) and mefloquine combined with artesunate (MA; 15:4 mg/kg). An open randomized controlled trial enrolled 316 patients with uncomplicated Plasmodium falciparum malaria, stratified prospectively into three age-groups. Early treatment failures (ETF) occurred in 41% (32/78) of CQ treated patients and in 24% of patients treated with SP (18/75). In young children the ETF rates were 87% after CQ and 35% after SP. Four children (two CQ, two SP) developed symptoms of cerebral malaria within 3 days after treatment. By day 42, failure rates (uncorrected for reinfections) had increased to 79% for CQ and 81% for SP. ETF rates were 2.5% after treatment with M and 3.9% after treatment with MA (P > 0.2). Overall uncorrected treatment failure rates at day 42 following M and MA were 23% and 21%, respectively. Chloroquine and SP are completely ineffective for the treatment of falciparum malaria in northern Myanmar. Mefloquine treatment is much more effective, but three day combination regimens with artesunate will be needed for optimum efficacy and protection against resistance

    Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites.

    Get PDF
    Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach

    Determinants of the accuracy of rapid diagnostic tests in malaria case management: evidence from low and moderate transmission settings in the East African highlands

    Get PDF
    BACKGROUND: The accuracy of malaria diagnosis has received renewed interest in recent years due to changes in treatment policies in favour of relatively high-cost artemisinin-based combination therapies. The use of rapid diagnostic tests (RDTs) based on histidine-rich protein 2 (HRP2) synthesized by Plasmodium falciparum has been widely advocated to save costs and to minimize inappropriate treatment of non-malarial febrile illnesses. HRP2-based RDTs are highly sensitive and stable; however, their specificity is a cause for concern, particularly in areas of intense malaria transmission due to persistence of HRP2 antigens from previous infections. METHODS: In this study, 78,454 clinically diagnosed malaria patients were tested using HRP2-based RDTs over a period of approximately four years in four highland sites in Kenya and Uganda representing hypoendemic to mesoendemic settings. In addition, the utility of the tests was evaluated in comparison with expert microscopy for disease management in 2,241 subjects in two sites with different endemicity levels over four months. RESULTS: RDT positivity rates varied by season and year, indicating temporal changes in accuracy of clinical diagnosis. Compared to expert microscopy, the sensitivity, specificity, positive predictive value and negative predictive value of the RDTs in a hypoendemic site were 90.0%, 99.9%, 90.0% and 99.9%, respectively. Corresponding measures at a mesoendemic site were 91.0%, 65.0%, 71.6% and 88.1%. Although sensitivities at the two sites were broadly comparable, levels of specificity varied considerably between the sites as well as according to month of test, age of patient, and presence or absence of fever during consultation. Specificity was relatively high in older age groups and increased towards the end of the transmission season, indicating the role played by anti-HRP2 antibodies. Patients with high parasite densities were more likely to test positive with RDTs than those with low density infections. CONCLUSION: RDTs may be effective when used in low endemicity situations, but high false positive error rates may occur in areas with moderately high transmission. Reports on specificity of RDTs and cost-effectiveness analyses on their use should be interpreted with caution as there may be wide variations in these measurements depending upon endemicity, season and the age group of patients studied

    Reliability of Rapid Diagnostic Tests in Diagnosing Pregnancy-Associated Malaria in North-Eastern Tanzania.

    Get PDF
    Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool

    An exploratory study of factors that affect the performance and usage of rapid diagnostic tests for malaria in the Limpopo Province, South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria rapid diagnostic tests (RDTs) are relatively simple to perform and provide results quickly for making treatment decisions. However, the accuracy and application of RDT results depends on several factors such as quality of the RDT, storage, transport and end user performance. A cross sectional survey to explore factors that affect the performance and use of RDTs was conducted in the primary care facilities in South Africa.</p> <p>Methods</p> <p>This study was conducted in three malaria risk sub-districts of the Limpopo Province, in South Africa. Twenty nurses were randomly selected from 17 primary health care facilities, three nurses from hospitals serving the study area and 10 other key informants, representing the managers of the malaria control programmes, routine and research laboratories, were interviewed, using semi-structured questionnaires.</p> <p>Results</p> <p>There was a high degree of efficiency in ordering and distribution of RDTs, however only 13/20 (65%) of the health facilities had appropriate air-conditioning and monitoring of room temperatures. Sixty percent (12/20) of the nurses did not receive any external training on conducting and interpreting RDT. Fifty percent of nurses (10/20) reported RDT stock-outs. Only 3/20 nurses mentioned that they periodically checked quality of RDT. Fifteen percent of nurses reported giving antimalarial drugs even if the RDT was negative.</p> <p>Conclusion</p> <p>Storage, quality assurance, end user training and use of RDT results for clinical decision making in primary care facilities in South Africa need to be improved. Further studies of the factors influencing the quality control of RDTs, their performance of RDTs and the ways to improve their use of RDTs are needed.</p

    Plasmodium vivax Recurrence Following Falciparum and Mixed Species Malaria: Risk Factors and Effect of Antimalarial Kinetics

    Get PDF
    On the Thai-Myanmar border, Plasmodium vivax is the most common cause of parasitological failure following treatment for acute falciparum malaria. Slowly eliminated antimalarials significantly reduce the risk of early recurrence

    A Prospective Hospital Study to Evaluate the Diagnostic Accuracy of Rapid Diagnostic Tests for the Early Detection of Leptospirosis in Laos.

    Get PDF
    Leptospirosis is a globally important cause of acute febrile illness, and a common cause of non-malarial fever in Asia, Africa, and Latin America. Simple rapid diagnostic tests (RDTs) are needed to enable health-care workers, particularly in low resource settings, to diagnose leptospirosis early and give timely targeted treatment. This study compared four commercially available RDTs to detect human IgM against Leptospira spp. in a head-to-head prospective evaluation in Mahosot Hospital, Lao PDR. Patients with an acute febrile illness consistent with leptospirosis (N = 695) were included in the study during the 2014 rainy season. Samples were tested with four RDTs: ("Test-it" [Life Assay, Cape Town, South Africa; N = 418]; "Leptorapide" [Linnodee, Ballyclare, Northern Ireland; N = 492]; "Dual Path Platform" [DPP] [Chembio, Medford, NY; N = 530]; and "SD-IgM" [Standard Diagnostics, Yongin, South Korea; N = 481]). Diagnostic performance characteristics were calculated and compared with a composite reference standard combining polymerase chain reaction (PCR) (rrs), microscopic agglutination tests (MATs), and culture. Of all patients investigated, 39/695 (5.6%) were positive by culture, PCR, or MAT. The sensitivity and specificity of the RDTs ranged greatly from 17.9% to 63.6% and 62.1% to 96.8%, respectively. None of the investigated RDTs reached a sensitivity or specificity of > 90% for detecting Leptospira infections on admission. In conclusion, our investigation highlights the challenges associated with Leptospira diagnostics, particularly in populations with multiple exposures. These findings emphasize the need for extensive prospective evaluations in multiple endemic settings to establish the value of rapid tools for diagnosing fevers to allow targeting of antibiotics
    corecore