163 research outputs found

    Laminin Adsorption and Adhesion of Neurons and Glial Cells on Carbon Implanted Titania Nanotube Scaffolds for Neural Implant Applications

    Get PDF
    Interfacing neurons persistently to conductive matter constitutes one of the key challenges when designing brain-machine interfaces such as neuroelectrodes or retinal implants. Novel materials approaches that prevent occurrence of loss of long-term adhesion, rejection reactions, and glial scarring are highly desirable. Ion doped titania nanotube scaffolds are a promising material to fulfill all these requirements while revealing sufficient electrical conductivity, and are scrutinized in the present study regarding their neuron–material interface. Adsorption of laminin, an essential extracellular matrix protein of the brain, is comprehensively analyzed. The implantation-dependent decline in laminin adsorption is revealed by employing surface characteristics such as nanotube diameter, (Formula presented.) -potential, and surface free energy. Moreover, the viability of U87-MG glial cells and SH-SY5Y neurons after one and four days are investigated, as well as the material’s cytotoxicity. The higher conductivity related to carbon implantation does not affect the viability of neurons, although it impedes glial cell proliferation. This gives rise to novel titania nanotube based implant materials with long-term stability, and could reduce undesirable glial scarring

    Conductive Tracks in Carbon Implanted Titania Nanotubes: Atomic-Scale Insights from Experimentally Based Ab Initio Molecular Dynamics Modeling

    Get PDF
    Ion implantation of titania nanotubes is a highly versatile approach for tailoring structural and electrical properties. While recently self-organized nanoscale compositional patterning has been reported, the atomistic foundations and impact on electronic structure are not established at this point. To study these aspects, ab initio molecular dynamic simulations based on atomic compositions in C implanted titania nanotubes according to elastic recoil detection analysis are employed. Consistent with experimental data, carbon accumulates in chainlike precipitates, which are favorable for enhancing conductivity, as revealed by density-functional theory electronic ground states calculations are demonstrated
    • 

    corecore