50 research outputs found

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    A NEW SPECIES OF EUKOENENIA (PALPIGRADI, EUKOENENIIDAE) FROM MOROCCO

    No full text
    Volume: 35Start Page: 318End Page: 32

    The little known genus Forania (Acari, Prostigmata, Erythraeidae)

    No full text
    Mayoral, Jaime G., Barranco, Pablo (2010): The little known genus Forania (Acari, Prostigmata, Erythraeidae). Zootaxa 2408 (1): 59-68, DOI: 10.11646/zootaxa.2408.1.4, URL: https://biotaxa.org/Zootaxa/article/view/zootaxa.2408.1.

    Functional Analysis Of A Mosquito Short-Chain Dehydrogenase Cluster

    Get PDF
    The short-chain dehydrogenases (SDR) constitute one of the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone, and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP+-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8-15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity toward the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes.Fil: Mayoral, Jaime G.. Florida International University; Estados UnidosFil: Leonard, Kate T.. Florida International University; Estados UnidosFil: Nouzova, Marcela. Florida International University; Estados UnidosFil: Noriega, Fernando G.. Florida International University; Estados UnidosFil: Defelipe, Lucas Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentin

    First biological data, associated fauna, and microclimate preferences of the enigmatic cave-dwelling beetle Dalyat mirabilis Mateu, 2002 (Coleoptera, Carabidae)

    No full text
    Dalyat mirabilis is an extraordinary troglobite carabid described in 2002 from the cave Simarrón II in the southeast of the Iberian Peninsula (Spain). A new subfamily Dalyatinae was erected to accommodate this species with remarkable morphological characters and adaptations to live underground. In addition to the former original descriptions, there is only one more study and it aimed to elucidate its evolutionary history. Its closest living relative belongs to the genus Promecognathus in North America and both groups seem to have diverged sometime in the late Jurassic to early Cretaceous. In this work, the phenology of D. mirabilis, its associated invertebrate fauna and the environmental conditions of the cave Simarrón II were studied for a full year cycle. This carabid is not evenly distributed in the cave, in time or space. It is most abundant during the winter months, wet season, and it disappears from the top layer of the substrate in the summer. A positive correlation was found between the number of carabids captured per trap and the distance to the entrance of the cave; most specimens were captured in traps farthest from the entrance and located in the chamber known as Vias Salas Negras. Furthermore, several spatially-resolved analyses integrating relative humidity, temperature, and the number of captures per trap showed that D. mirabilis prefers Vias Salas Negras for having a higher and more stable relative humidity than other chambers in the cave. Larvae were never captured, regardless of intense efforts to collect them for years. Finally, 30 other invertebrate species belonging to 12 different Orders were captured in the cave and are listed here, 25.8% are troglobites, 29.0% troglophiles and 45.2% troglexenes. The data from this study was used for an initiative to protect this cave and its remarkable fauna. Some of the measures taken by the Administration include the control of human visits to the cave, the installation of a perimetral fence surrounding the entrance, and the installation of an informative panel at the exterior of the cave describing the endemic entomological fauna it contains

    Role of juvenile hormone and allatotropin on nutrient allocation, ovarian development and survivorship in mosquitoes

    No full text
    Teneral reserves are utilized to initiate previtellogenic ovarian development in mosquitoes. Females having emerged with low teneral reserves have reduced juvenile hormone (JH) synthesis and previtellogenic development. We investigated what role JH, allatotropin (AT) and other head-factors play in the regulation of previtellogenic ovarian development and adult survivorship. Factors from the head are essential for corpora allata (CA) activation and reproductive maturation. We have shown that decapitation of females within 9–12 h after adult ecdysis prevented normal development of the previtellogenic follicles; however maximum previtellogenic ovarian development could be induced in decapitated females by topically applying a JH analog. When females were decapitated 12 or more hours after emergence nutritional resources had been committed to ovarian development and survivorship was significantly reduced. To study if allatotropin levels correlated with teneral reserves, we measured AT titers in the heads of two adult phenotypes (large and small females) generated by raising larvae under different nutritional diets. In large mosquitoes AT levels increased to a maximum of 45 fmol in day 4; in contrast, the levels of allatotropin in the heads of small mosquitoes remained below 9 fmol during the 7 days evaluated. These results suggest that only when nutrients are appropriate, factors released from the brain induce the CA to synthesize enough JH to activate reproductive maturation

    A coordinated expression of biosynthetic enzymes controls the flux of juvenile hormone precursors in the corpora allata of mosquitoes.

    No full text
    Juvenile hormone (JH) is a key regulator of metamorphosis and ovarian development in mosquitoes. Adult female Aedes aegypti mosquitoes show developmental and dynamically regulated changes of JH synthesis. Newly emerged females have corpora allata (CA) with low biosynthetic activity, but they produce high amounts of JH a day later; blood feeding results in a striking decrease in JH synthesis, but the CA returns to a high level of JH synthesis three days later. To understand the molecular bases of these dynamic changes we combined transcriptional studies of 11 of the 13 enzymes of the JH pathway with a functional analysis of JH synthesis. We detected up to a 1000-fold difference in the levels of mRNA in the CA among the JH biosynthetic enzymes studied. There was a coordinated expression of the 11 JH biosynthetic enzymes in female pupae and adult mosquito. Increases or decreases in transcript levels for all the enzymes resulted in increases or decreases of JH synthesis; suggesting that transcript changes are at least partially responsible for the dynamic changes of JH biosynthesis observed. JH synthesis by the CA was progressively increased in vitro by addition of exogenous precursors such as geranyl-diphosphate, farnesyl-diphosphate, farnesol, farnesal and farnesoic acid. These results suggest that the supply of these precursors and not the activity of the last 6 pathway enzymes is rate limiting in these glands. Nutrient reserves play a key role in the regulation of JH synthesis. Nutritional deficient females had reduced transcript levels for the genes encoding JH biosynthetic enzymes and reduced JH synthesis. Our studies suggest that JH synthesis is controlled by the rate of flux of isoprenoids, which is the outcome of a complex interplay of changes in precursor pools, enzyme levels and external regulators such as nutrients and brain factors. Enzyme levels might need to surpass a minimum threshold to achieve a net flux of precursors through the biosynthetic pathway. In glands with low synthetic activity, the flux of isoprenoids might be limited by the activity of enzymes with low levels of expressio

    Functional characterization of an allatotropin receptor expressed in the corpora allata of mosquitoes

    No full text
    Allatotropin is an insect neuropeptide with pleiotropic actions on a variety of different tissues. In the present work we describe the identification, cloning and functional and molecular characterization of an Aedes aegypti allatotropin receptor (AeATr) and provide a detailed quantitative study of the expression of the AeATr gene in the adult mosquito. Analysis of the tissue distribution of AeATr mRNA in adult female revealed high transcript levels in the nervous system (brain, abdominal, thoracic and ventral ganglia), corpora allata-corpora cardiaca complex and ovary. The receptor is also expressed in heart, hindgut and male testis and accessory glands. Separation of the corpora allata (CA) and corpora cardiaca followed by analysis of gene expression in the isolated glands revealed expression of the AeATr primarily in the CA. In the female CA, the AeATr mRNA levels were low in the early pupae, started increasing 6 hours before adult eclosion and reached a maximum 24 hours after female emergence. Blood feeding resulted in a decrease in transcript levels. The pattern of changes of AeATr mRNA resembles the changes in JH biosynthesis. Fluorometric Imaging Plate Reader recordings of calcium transients in HEK293 cells expressing the AeATr showed a selective response to A. aegypti allatotropin stimulation in the low nanomolar concentration range. Our studies suggest that the AeATr play a role in the regulation of JH synthesis in mosquitoes

    Rapid direct analysis in real time (DART) mass spectrometric detection of juvenile hormone III and its terpene precursors.

    No full text
    Direct analysis in real time (DART) is a plasma-based ambient ionization technique that enables rapid ionization of small molecules with high sample throughput. In this work, DART was coupled to an orthogonal (oa) time-of-flight (TOF) mass spectrometer and the system was optimized for analyzing a vital hormonal regulator in insects, juvenile hormone (JH) III and its terpene precursors, namely, farnesol, farnesoic acid, and methyl farne-soate. Optimization experiments were planned using design of experiments (DOE) full factorial models to identify the most significant DART variables contributing to JH III analysis sensitivity by DART-TOF mass spectrometry (MS). The optimized DART-TOF MS method had femto-mole to sub-picomole detection limits for terpene standards, along with mass accuracies below 5 ppm. Finally, the possibility of distinguishing between two farnesol isomers by in-source-collision-induced dissociation (CID) in the first differentially pumped region of the oaTOF mass spectrometer was investigated. DART-MS enabled high-throughput, sensitive analysis with acquisition times ranging from 30 s to a minute. To the best of our knowledge, this is the first report on the application of DART-MS to the detection and identification of volatile or semi-volatile insect terpenoids, and on the use of DOE approaches to optimize DART-MS analytical procedures
    corecore