390 research outputs found

    Seasonal variation and impact of waste-water lagoons as larval habitat on the population dynamics of Culicoides sonorensis (Diptera:Ceratpogonidae) at two dairy farms in northern California.

    Get PDF
    The Sacramento (northern Central) Valley of California (CA) has a hot Mediterranean climate and a diverse ecological landscape that is impacted extensively by human activities, which include the intensive farming of crops and livestock. Waste-water ponds, marshes, and irrigated fields associated with these agricultural activities provide abundant larval habitats for C. sonorensis midges, in addition to those sites that exist in the natural environment. Within this region, C. sonorensis is an important vector of bluetongue (BTV) and related viruses that adversely affect the international trade and movement of livestock, the economics of livestock production, and animal welfare. To characterize the seasonal dynamics of immature and adult C. sonorensis populations, abundance was monitored intensively on two dairy farms in the Sacramento Valley from August 2012- to July 2013. Adults were sampled every two weeks for 52 weeks by trapping (CDC style traps without light and baited with dry-ice) along N-S and E-W transects on each farm. One farm had large operational waste-water lagoons, whereas the lagoon on the other farm was drained and remained dry during the study. Spring emergence and seasonal abundance of adult C. sonorensis on both farms coincided with rising vernal temperature. Paradoxically, the abundance of midges on the farm without a functioning waste-water lagoon was increased as compared to abundance on the farm with a waste-water lagoon system, indicating that this infrastructure may not serve as the sole, or even the primary larval habitat. Adult midges disappeared from both farms from late November until May; however, low numbers of parous female midges were detected in traps set during daylight in the inter-seasonal winter period. This latter finding is especially critical as it provides a potential mechanism for the "overwintering" of BTV in temperate regions such as northern CA. Precise documentation of temporal changes in the annual abundance and dispersal of Culicoides midges is essential for the creation of models to predict BTV infection of livestock and to develop sound abatement strategies

    Nuclear variants of bone morphogenetic proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone morphogenetic proteins (BMPs) contribute to many different aspects of development including mesoderm formation, heart development, neurogenesis, skeletal development, and axis formation. They have previously been recognized only as secreted growth factors, but the present study detected Bmp2, Bmp4, and Gdf5/CDMP1 in the nuclei of cultured cells using immunocytochemistry and immunoblotting of nuclear extracts.</p> <p>Results</p> <p>In all three proteins, a bipartite nuclear localization signal (NLS) was found to overlap the site at which the proproteins are cleaved to release the mature growth factors from the propeptides. Mutational analyses indicated that the nuclear variants of these three proteins are produced by initiating translation from downstream alternative start codons. The resulting proteins lack N-terminal signal peptides and are therefore translated in the cytoplasm rather than the endoplasmic reticulum, thus avoiding proteolytic processing in the secretory pathway. Instead, the uncleaved proteins (designated nBmp2, nBmp4, and nGdf5) containing the intact NLSs are translocated to the nucleus. Immunostaining of endogenous nBmp2 in cultured cells demonstrated that the amount of nBmp2 as well as its nuclear/cytoplasmic distribution differs between cells that are in M-phase versus other phases of the cell cycle.</p> <p>Conclusions</p> <p>The observation that nBmp2 localization varies throughout the cell cycle, as well as the conservation of a nuclear localization mechanism among three different BMP family members, suggests that these novel nuclear variants of BMP family proteins play an important functional role in the cell.</p

    Seladelpar treatment reduces interleukin-31 and pruritus in patients with primary biliary cholangitis

    Get PDF
    BACKGROUND AND AIMS: Pruritus is a debilitating symptom for many people living with primary biliary cholangitis (PBC). In studies with seladelpar, a selective PPAR-delta agonist, PBC patients experienced significant improvement in pruritus and reduction of serum bile acids. Interleukin-31 (IL-31) is a cytokine known to mediate pruritus and blocking IL-31 signaling provides relief in pruritic skin diseases. This study examined the connection between seladelpar's anti-pruritic effects, IL-31 and bile acid levels in PBC patients. APPROACH AND RESULTS: IL-31 levels were quantified in serum samples from the ENHANCE study of PBC patients receiving daily oral doses of placebo (n=55), seladelpar 5 mg (n=53) or 10 mg (n=53) for 3 months and for healthy volunteers (n=55). IL-31 levels were compared with pruritus using a numerical rating scale (NRS, 0-10) and with bile acid levels. Baseline IL-31 levels closely correlated with pruritus NRS (r=0.54, p<0.0001), and total (r=0.54, p<0.0001) and conjugated bile acids (up to 0.64, p<0.0001). Decreases in IL-31 were observed with seladelpar 5 mg (-30%, p=0.0003) and 10 mg (-52%, p<0.0001) versus placebo (+31%). Patients with clinically meaningful improvement in pruritus (NRS≥2 decrease) demonstrated greater dose-dependent reductions in IL-31 compared to those without pruritus improvement (NRS<2 decrease). Strong correlations were observed for the changes between levels of IL-31 and total bile acids (r=0.63, p<0.0001) in the seladelpar 10 mg group. CONCLUSIONS: Seladelpar decreased serum IL-31 and bile acids in PBC patients. The reductions of IL-31 and bile acids correlated closely with each other and pruritus improvement suggesting a mechanism to explain seladelpar's anti-pruritic effects

    The Genetic and Molecular Basis of O-Antigenic Diversity in Burkholderia pseudomallei Lipopolysaccharide

    Get PDF
    Lipopolysaccharide (LPS) is one of the most important virulence and antigenic components of Burkholderia pseudomallei, the causative agent of melioidosis. LPS diversity in B. pseudomallei has been described as typical, atypical or rough, based upon banding patterns on SDS-PAGE. Here, we studied the genetic and molecular basis of these phenotypic differences. Bioinformatics was used to determine the diversity of genes known or predicted to be involved in biosynthesis of the O-antigenic moiety of LPS in B. pseudomallei and its near-relative species. Multiplex-PCR assays were developed to target diversity of the O-antigen biosynthesis gene patterns or LPS genotypes in B. pseudomallei populations. We found that the typical LPS genotype (LPS genotype A) was highly prevalent in strains from Thailand and other countries in Southeast Asia, whereas the atypical LPS genotype (LPS genotype B) was most often detected in Australian strains (∼13.8%). In addition, we report a novel LPS ladder pattern, a derivative of the atypical LPS phenotype, associated with an uncommon O-antigen biosynthesis gene cluster that is found in only a small B. pseudomallei sub-population. This new LPS group was designated as genotype B2. We also report natural mutations in the O-antigen biosynthesis genes that potentially cause the rough LPS phenotype. We postulate that the diversity of LPS may correlate with differential immunopathogenicity and virulence among B. pseudomallei strains

    Early-Stage Metastasis Requires Mdm2 and Not p53 Gain of Function

    Get PDF
    Metastasis of cancer cells to distant organ systems is a complex process that is initiated with the programming of cells in the primary tumor. The formation of distant metastatic foci is correlated with poor prognosis and limited effective treatment options. We and others have correlated Mouse double minute 2 (Mdm2) with metastasis; however, the mechanisms involved have not been elucidated. Here, it is reported that shRNA-mediated silencing of Mdm2 inhibits epithelial–mesenchymal transition (EMT) and cell migration. In vivo analysis demonstrates that silencing Mdm2 in both post-EMT and basal/triple-negative breast cancers resulted in decreased primary tumor vasculature, circulating tumor cells, and metastatic lung foci. Combined, these results demonstrate the importance of Mdm2 in orchestrating the initial stages of migration and metastasis
    corecore