6 research outputs found

    Deletion of LCE3C and LCE3B is a susceptibility factor for psoriatic arthritis: a study in Spanish and Italian populations and meta-analysis.

    Full text link
    OBJECTIVE: The LCE3C_LCE3B-del variant is associated with psoriasis and rheumatoid arthritis. Its role in psoriatic arthritis (PsA) is unclear, however, as shown by 3 recent studies with contradictory results. In order to investigate whether LCE3C_LCE3B-del constitutes a risk factor for PsA susceptibility, we first tested this variant in patients with PsA from Spanish and Italian populations and then performed a meta-analysis including the previous case-control studies. METHODS: We genotyped LCE3C_LCE3B-del and its tag single-nucleotide polymorphism (SNP), rs4112788, in an original discovery cohort of 424 Italian patients with PsA and 450 unaffected control subjects. A Spanish replication cohort consisting of 225 patients with PsA and 469 control subjects was also genotyped. A meta-analysis considering 7,758 control subjects and 2,325 patients with PsA was also performed. RESULTS: We observed a significant association between PsA and the LCE3C_LCE3B-del tag SNP in the Italian and Spanish cohorts, with an overall corrected P value of 0.00019 and a corresponding odds ratio of 1.35 (95% confidence interval 1.14-1.59). Stratified analyses by subphenotype indicated a stronger association for patients with oligoarticular disease. Meta-analysis including data from all previous published studies confirmed an association of PsA with the LCE3C_LCE3B-del tag SNP. CONCLUSION: LCE3C_LCE3B-del is a susceptibility factor for PsA, confirming the existence of a shared risk factor involving the epidermal skin barrier in autoimmune disorders

    Impaired mRNA splicing and proteostasis in preadipocytes in obesity-related metabolic disease

    No full text
    Preadipocytes are crucial for healthy adipose tissue expansion. Preadipocyte differentiation is altered in obese individuals, which has been proposed to contribute to obesity-associated metabolic disturbances. Here, we aimed at identifying the pathogenic processes underlying impaired adipocyte differentiation in obese individuals with insulin resistance (IR)/type 2 diabetes (T2D). We report that down-regulation of a key member of the major spliceosome, PRFP8/PRP8, as observed in IR/T2D preadipocytes from subcutaneous (SC) fat, prevented adipogenesis by altering both the expression and splicing patterns of adipogenic transcription factors and lipid droplet-related proteins, while adipocyte differentiation was restored upon recovery of PRFP8/PRP8 normal levels. Adipocyte differentiation was also compromised under conditions of endoplasmic reticulum (ER)-associated protein degradation (ERAD) hyperactivation, as occurs in SC and omental (OM) preadipocytes in IR/T2D obesity. Thus, targeting mRNA splicing and ER proteostasis in preadipocytes could improve adipose tissue function and thus contribute to metabolic health in obese individuals.Ministerio de Ciencia, Innovación y Universidades/FEDER (BFU2013-44229‐R, BFU2016‐76711‐R, BFU2017‐90578‐REDT to MMM; RTI2018-093919-B-I00 to SF-V); Consejería de Salud y Bienestar Social/Junta de Andalucía/FEDER (PI‐0200/2013 to MMM; PI‐0159‐2016 to RG‐R); Instituto de Salud Carlos III (ISCIII)/FEDER (PIE14/00005 to JL‐M and MMM; PI16/00264 to RML; PI17/0153 to JV); Fondo de Investigación Sanitaria/ISCIII/FEDER Miguel Servet tenure-track program (CP10 /00438, CPII16/00008 to SF-V); Research Plan of University of Córdoba (Mod 2.5, 2019 to RG-R); Co-funded by European Regional Development Fund/European Social Fund "Investing in your future"; and Consejería de Economía, Conocimiento, Empresas y universidad/Junta de Andalucía/FEDER (BIO-0139). CIBEROBN is an initiative of the ISCIII, Spain.Ye

    Adipose tissue mitochondrial dysfunction in human obesity is linked to a specific DNA methylation signature in adipose-derived stem cells

    No full text
    Background: A functional population of adipocyte precursors, termed adipose-derived stromal/stem cells (ASCs), is crucial for proper adipose tissue (AT) expansion, lipid handling, and prevention of lipotoxicity in response to chronic positive energy balance. We previously showed that obese human subjects contain a dysfunctional pool of ASCs. Elucidation of the mechanisms underlying abnormal ASC function might lead to therapeutic interventions for prevention of lipotoxicity by improving the adipogenic capacity of ASCs. Methods: Using epigenome-wide association studies, we explored the impact of obesity on the methylation signature of human ASCs and their differentiated counterparts. Mitochondrial phenotyping of lean and obese ASCs was performed. TBX15 loss- and gain-of-function experiments were carried out and western blotting and electron microscopy studies of mitochondria were performed in white AT biopsies from lean and obese individuals. Results: We found that DNA methylation in adipocyte precursors is significantly modified by the obese environment, and adipogenesis, inflammation, and immunosuppression were the most affected pathways. Also, we identified TBX15 as one of the most differentially hypomethylated genes in obese ASCs, and genetic experiments revealed that TBX15 is a regulator of mitochondrial mass in obese adipocytes. Accordingly, morphological analysis of AT from obese subjects showed an alteration of the mitochondrial network, with changes in mitochondrial shape and number. Conclusions: We identified a DNA methylation signature in adipocyte precursors associated with obesity, which has a significant impact on the metabolic phenotype of mature adipocytes

    Switching TNF antagonists in patients with chronic arthritis: An observational study of 488 patients over a four-year period

    No full text
    The objective of this work is to analyze the survival of infliximab, etanercept and adalimumab in patients who have switched among tumor necrosis factor (TNF) antagonists for the treatment of chronic arthritis. BIOBADASER is a national registry of patients with different forms of chronic arthritis who are treated with biologics. Using this registry, we have analyzed patient switching of TNF antagonists. The cumulative discontinuation rate was calculated using the actuarial method. The log-rank test was used to compare survival curves, and Cox regression models were used to assess independent factors associated with discontinuing medication. Between February 2000 and September 2004, 4,706 patients were registered in BIOBADASER, of whom 68% had rheumatoid arthritis, 11% ankylosing spondylitis, 10% psoriatic arthritis, and 11% other forms of chronic arthritis. One- and two-year drug survival rates of the TNF antagonist were 0.83 and 0.75, respectively. There were 488 patients treated with more than one TNF antagonist. In this situation, survival of the second TNF antagonist decreased to 0.68 and 0.60 at 1 and 2 years, respectively. Survival was better in patients replacing the first TNF antagonist because of adverse events (hazard ratio (HR) for discontinuation 0.55 (95% confidence interval (CI), 0.34-0.84)), and worse in patients older than 60 years (HR 1.10 (95% CI 0.97-2.49)) or who were treated with infliximab (HR 3.22 (95% CI 2.13-4.87)). In summary, in patients who require continuous therapy and have failed to respond to a TNF antagonist, replacement with a different TNF antagonist may be of use under certain situations. This issue will deserve continuous reassessment with the arrival of new medications. © 2006 Gomez-Reino and Loreto Carmona; licensee BioMed Central Ltd
    corecore