19 research outputs found

    Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest

    Get PDF
    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime

    News from the field ou como um projeto internacional começa a sair do papel

    Get PDF
    This paper presents the main research issues of JĂȘ Landscapes of Southern Brazil project and also brings preliminary results of the first year of Archaeology and Palaeoecology research activities.O presente texto apresenta as questĂ”es centrais de pesquisa do projeto Paisagens JĂȘ do Sul do Brasil e tambĂ©m traz resultados preliminares do primeiro ano de atividades de pesquisa em Arqueologia e Paleoecologia

    Neutrino Oscillations and the Supernova 1987A Signal

    Get PDF
    We study the impact of neutrino oscillations on the interpretation of the supernova (SN) 1987A neutrino signal by means of a maximum-likelihood analysis. We focus on oscillations between Μ‟e\overline\nu_e with Μ‟Ό\overline\nu_\mu or Μ‟τ\overline\nu_\tau with those mixing parameters that would solve the solar neutrino problem. For the small-angle MSW solution (Δm2≈10−5 eV2\Delta m^2\approx10^{-5}\,\rm eV^2, sin⁥22Θ0≈0.007\sin^22\Theta_0\approx0.007), there are no significant oscillation effects on the Kelvin-Helmholtz cooling signal; we confirm previous best-fit values for the neutron-star binding energy and average spectral Μ‟e\overline\nu_e temperature. There is only marginal overlap between the upper end of the 95.4\% CL inferred range of ⟹EΜ‟e⟩\langle E_{\overline\nu_e}\rangle and the lower end of the range of theoretical predictions. Any admixture of the stiffer Μ‟Ό\overline\nu_\mu spectrum by oscillations aggravates the conflict between experimentally inferred and theoretically predicted spectral properties. For mixing parameters in the neighborhood of the large-angle MSW solution (Δm2≈10−5 eV2\Delta m^2\approx10^{-5}\,\rm eV^2, sin⁥22Θ0≈0.7\sin^22\Theta_0\approx0.7) the oscillations in the SN are adiabatic, but one needs to include the regeneration effect in the Earth which causes the Kamiokande and IMB detectors to observe different Μ‟e\overline\nu_e spectra. For the solar vacuum solution (Δm2≈10−10 eV2\Delta m^2\approx10^{-10}\,\rm eV^2, sin⁥22Θ0≈1\sin^22\Theta_0\approx1) the oscillations in the SN are nonadiabatic; vacuum oscillations take place between the SN and the detector. If either of the large-angle solutions were borne out by the upcoming round of solar neutrino experiments, one would have to conclude that the SN~1987A Μ‟Ό\overline\nu_\mu and/or Μ‟e\overline\nu_e spectra had been much softer than predicted by currentComment: Final version with very minor wording changes, to be published in Phys. Rev.

    Numerical hydrodynamics in general relativity

    Get PDF
    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article the present update provides additional information on numerical schemes and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.Comment: 105 pages, 12 figures. The full online-readable version of this article, including several animations, will be published in Living Reviews in Relativity at http://www.livingreviews.or

    Diatom-based Late Quaternary precipitation record for lowland tropical South America

    No full text
    The late Quaternary palaeoclimatic history of the lowland Southern Hemisphere Tropics of South America (SHTSA) has been little studied and analysis of key climatic events, such as the Last Glacial Maximum (centred ~ 21,000 years ago (21 cal. ka BP)) and the glacial-Holocene transition is limited. Studies from the SH tropical Andes and the Atlantic seaboard demonstrate a strengthening of the South American summer monsoon during the LGM, in tune with the ~ 20 kyr precession orbital cycle. However, palynological studies from SHTSA suggest a drier LGM. There are difficulties in interpreting different palaeoenvironmental proxy records and the extent to which they reflect changes in temperature, precipitation, and/or atmospheric CO2 concentrations. In particular, the palaeoenvironmental significance of palynological data is often unclear. Also, high frequency, millennial-scale events have not been captured in records from the lowland SHTSA due to a lack of high resolution temporal records. Diatoms have been used widely in other parts of the world to reconstruct lake level change and therefore provide an independent proxy for precipitation, and an understanding of the modern diatom ecology is essential for accurate palaeoreconstruction. The main rationale of this thesis is to address the uncertainty of the glacial-Holocene climate in South America. To this end, this thesis aims to: (a) investigate the distribution, ecology, and flora of diatom taxa at Laguna La Gaiba (17°45’S, 57°40’W) (LLG) in the heart of lowland tropical South America, where very few modern diatom studies exist; (b) determine whether modern diatom assemblages at LLG will provide a useful analogue for palaeoenvironmental reconstructions, in particular, lake depth reconstruction; (c) provide a detailed late Quaternary lake level reconstruction for the lowland interior of SHTSA, based upon fossil diatom analysis of a sedimentary core in LLG. Descriptive, quantitative and multivariate analyses were applied to modern diatom assemblages and environmental variables to ascertain the modern diatom environment of LLG. Diatom, pollen, and geochemical analyses, chronologically constrained by 18 AMS 14C dates, were performed on a sediment core extracted from LLG. Key findings indicate: (1) Aulacoseira ambigua, A. ambigua var. robusta. A. distans and A. granulata var. angustissima were the most abundant species. Shallowwater species, such as Staurosira and Eunotia spp., dominated the shallows and littoral zone, whilst deep-water species, such as Aulacoseira sp., dominated in open water; (2) The highest percent variance in the diatom data was explained by depth and pH; (3) Analysis of fossil diatom assemblages from the LLG core demonstrated that the Last Glacial Maximum (LGM) and late glacial period (prior to 12.5 kyr BP) was drier than present. This corroborates and significantly strengthens pollen-based palaeo-hydrological reconstructions from the same core; (4) An abrupt shift from 12.5 kyr BP from shallow water to deep water diatoms signals major flooding of LLG associated with the transition from relatively drier glacial conditions to wetter Holocene conditions and also highlights an anomalously wet period centred over 12.2 kyr BP that falls within the Younger Dryas chronozone; (5) Deep-water diatoms remain high throughout the Holocene, which means that the mid-Holocene aridity inferred from the pollen data (expansion of seasonally-dry tropical forest) is not captured by the diatom data. These results not only present the modern diatom ecology of a little studied area in lowland Bolivia, but also highlight the potential of diatoms as a proxy for past lake level fluctuations, improving the understanding of late Quaternary palaeoclimate of tropical South America. Used as part of a multiproxy reconstruction, this record has provided a more complete picture of the variation between regions of late Quaternary climate change in South America, as evidence of a dry LGM climate contrasts with the robust, well-dated climate archives of the central Andes and E Brazil. This suggests the climate in the continental interior of SHTSA was not driven by the precesionally-forced monsoon cycle but is in step with changes in glacialinterglacial cycle boundary conditions.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Pre-Columbian ring ditch construction and land use on a “chocolate forest island” in the Bolivian Amazon

    Get PDF
    We present a palaeoecological investigation of pre-Columbian land use in the savannah “forest island” landscape of north-east Bolivian Amazonia. A 5700 year sediment core from La Luna Lake, located adjacent to the La Luna forest island site, was analysed for fossil pollen and charcoal. We aimed to determine the palaeoenvironmental context of pre-Columbian occupation on the site and assess the environmental impact of land use in the forest island region. Evidence for anthropogenic burning and Zea mays L. cultivation began ~2000 cal a BP, at a time when the island was covered by savannah, under drier-than-present climatic conditions. After ~1240 cal a BP burning declined and afforestation occurred. We show that construction of the ring ditch, which encircles the island, did not involve substantial deforestation. Previous estimates of pre-Columbian population size in this region, based upon labour required for forest clearance, should therefore be reconsidered. Despite the high density of economically useful plants, such as Theobroma cacao, in the modern forest, no direct pollen evidence for agroforestry was found. However, human occupation is shown to pre-date and span forest expansion on this site, suggesting that here, and in the wider forest island region, there is no truly pre-anthropogenic ‘pristine’ forest
    corecore