7 research outputs found

    Light-induced reflectivity transients in black-Si nanoneedles

    Full text link
    © 2015 Elsevier B.V. All rights reserved. The change in reflectivity of black-Si (b-Si) upon optical excitation was measured by the pump-probe technique using picosecond laser pulses at 532 (pump) and 1064 nm (probe) wavelengths. The specular reflection from the random pattern of plasma-etched b-Si nano-needles was dominated by the photo-excited free-carrier contribution to the reflectivity. The kinetics of the reflectivity were found to be consistent with surface structural and chemical analysis, performed by scanning and transmission electron microscopy, and spectroscopic ellipsometry. The surface recombination velocity on the b-Si needles was estimated to be ~102cm/s. Metalization of b-Si led to much faster recombination and alteration of reflectivity. The reflectivity spectra of random b-Si surfaces with different needle lengths was modeled by a multi-step refractive index profile in the Drude formalism. The dip in the reflectivity spectra and the sign reversal in the differential reflectivity signal at certain b-Si needle sizes is explained by the model

    Acoustomicrofluidic assembly of oriented and simultaneously activated metal-organic frameworks

    Get PDF
    Article OPEN ACCESS Published: 23 May 2019 Acoustomicrofluidic assembly of oriented and simultaneously activated metal–organic frameworks Heba Ahmed, Amgad R. Rezk, Joseph J. Richardson, Lauren K. Macreadie, Ravichandar Babarao, Edwin L. H. Mayes, Lillian Lee & Leslie Y. Yeo Nature Communicationsvolume 10, Article number: 2282 (2019) | Download Citation Abstract The high surface area and porosity, and limitless compound and network combinations between the metal ions and organic ligands making up metal–organic frameworks (MOFs) offer tremendous opportunities for their use in many applications. While numerous methods have been proposed for the synthesis of MOF powders, it is often difficult to obtain oriented crystals with these techniques. Further, the need for additional post-synthesis steps to activate the crystals and release them from the substrate presents a considerable production challenge. Here, we report an acoustically-driven microcentrifugation platform that facilitates fast convective solutal transport, allowing the synthesis of MOF crystals in as short as five minutes. The crystals are not only oriented due to long-range out-of-plane superlattice ordering aided by molecular dipole polarization under the acoustoelectric coupling, but also simultaneously activated during the synthesis process

    A comparative study of the effect of submicron porous and smooth ultrafine-grained Ti-20Mo surfaces on osteoblast responses

    No full text
    The surface of an orthopaedic implant plays a crucial role in determining the adsorption of proteins and cell functions. A detailed comparative study has been made of the in vitro osteoblast responses to coarse-grained (grain size: 500 μm), ultrafine-grained (grain size: 100 nm), coarse-porous (pore size: 350 nm), and fine-porous (pore size: 155 nm) surfaces of Ti-20Mo alloy. The purpose was to provide essential experimental data for future design of orthopaedic titanium implants for rapid osseointegration. Systematic original experimental data was produced for each type of surfaces in terms of surface wettability, cell morphology, adhesion, growth, and differentiation. Microscopic evidence was collected to reveal the detailed interplay between each characteristic surface with proteins or cells. Various new observations were discussed and compared with literature data. It was concluded that the coarse-porous surfaces offered the optimum topographical environment for osteoblasts and that the combination of ultrafine grains and considerable grain boundary areas is not an effective way to enhance cell growth and osteogenic capacity. Moreover, pore features (size and depth) have a greater effect than smooth surfaces on cell growth and osteogenic capacity. It proves that cells can discern the difference in pore size in the range of 100-350 nm
    corecore