137 research outputs found
Using induced chlorophyll production to monitor the physiological state of stored potatoes (Solanum tuberosum L.)
A Visible/Near-infrared (Vis/NIR) spectrometer equipped with a fibre-optic probe was used to stimulate and measure chlorophyll production in potato tubers, at low levels that produce no visible greening in the skin. Subtle responses to changes in the light stimulus were also tracked. When used with a static experimental setup, these measurements are precise. However, the technique is very sensitive to the exact geometry of the tuber-probe arrangement, and careful positioning of the probe is crucial. Complementary studies established that tissue under the apical buds (āeyesā) has greater capacity to produce chlorophyll than other locations on the tuber surface. A long-term study of multiple tubers suggested that different cultivars behave differently in terms of the rate of chlorophyll production. These behavioural differences may be related to the batch dormancy status; validating this potential relationship is the focus of ongoing work
Yeast Sm-like proteins function in mRNA decapping and decay
One of the main mechanisms of messenger RNA degradation in eukaryotes occurs by deadenylation-dependent decapping which leads to 5'-to-3' decay1, 2. A family of Sm-like (Lsm) proteins has been identified, members of which contain the 'Sm' sequence motif, form a complex with U6 small nuclear RNA and are required for pre-mRNA splicing3-9. Here we show that mutations in seven yeast Lsm proteins (Lsm1āLsm7) also lead to inhibition of mRNA decapping. In addition, the Lsm1āLsm7 proteins co-immunoprecipitate with the mRNA decapping enzyme (Dcp1), a decapping activator (Pat1/Mrt1) and with mRNA. This indicates that the Lsm proteins may promote decapping by interactions with the mRNA and the decapping machinery. In addition, the Lsm complex that functions in mRNA decay appears to be distinct from the U6-associated Lsm complex, indicating that Lsm proteins form specific complexes that affect different aspects of mRNA metabolism
Prolonged treatment of genetically obese mice with conjugated linoleic acid improves glucose tolerance and lowers plasma insulin concentration: possible involvement of PPAR activation
BACKGROUND: Studies in rodents and some studies in humans have shown that conjugated linoleic acid (CLA), especially its trans-10, cis-12 isomer, reduces body fat content. However, some but not all studies in mice and humans (though none in rats) have found that CLA promotes insulin resistance. The molecular mechanisms responsible for these effects are unclear, and there are conflicting reports on the effects of CLA on peroxisomal proliferator-activated receptor-Ī³ (PPARĪ³) activation and expression. We have conducted three experiments with CLA in obese mice over three weeks, and one over eleven weeks. We have also investigated the effects of CLA isomers in PPARĪ³ and PPARĪ± reporter gene assays. RESULTS: Inclusion of CLA or CLA enriched with its trans-10, cis-12 isomer in the diet of female genetically obese (lep(ob)/lep(ob)) mice for up to eleven weeks reduced body weight gain and white fat pad weight. After two weeks, in contrast to beneficial effects obtained with the PPARĪ³ agonist rosiglitazone, CLA or CLA enriched with its trans-10, cis-12 isomer raised fasting blood glucose and plasma insulin concentrations, and exacerbated glucose tolerance. After 10 weeks, however, CLA had beneficial effects on glucose and insulin concentrations. At this time, CLA had no effect on the plasma TNFĪ± concentration, but it markedly reduced the plasma adiponectin concentration. CLA and CLA enriched with either isomer raised the plasma triglyceride concentration during the first three weeks, but not subsequently. CLA enriched with its trans-10, cis-12 isomer, but not with its cis-9, trans-11 isomer, stimulated PPARĪ³-mediated reporter gene activity; both isomers stimulated PPARĪ±-mediated reporter gene activity. CONCLUSIONS: CLA initially decreased but subsequently increased insulin sensitivity in lep(ob)/lep(ob )mice. Activation of both PPARĪ³ and PPARĪ± may contribute to the improvement in insulin sensitivity. In the short term, however, another mechanism, activated primarily by trans-10, cis-12-CLA, which probably leads to reduced adipocyte number and consequently reduced plasma adiponectin concentration, may decrease insulin sensitivity
Dietary nutrient intakes and skinaging appearance among middle-aged American women
ABSTRACT Background: Nutritional factors play a key role in normal dermatologic functioning. However, little is known about the effects of diet on skin-aging appearance. Objective: We evaluated the associations between nutrient intakes and skin-aging appearance. Design: Using data from the first National Health and Nutrition Examination Survey, we examined associations between nutrient intakes and skin aging in 4025 women (40 -74 y). Nutrients were estimated from a 24-h recall. Clinical examinations of the skin were conducted by dermatologists. Skin-aging appearance was defined as having a wrinkled appearance, senile dryness, and skin atrophy. A 17-g increase in fat and a 50-g increase in carbohydrate intakes increased the likelihood of a wrinkled appearance (OR: 1.28 and 1.36, respectively) and skin atrophy (OR: 1.37 and 1.33, respectively). These associations were independent of age, race, education, sunlight exposure, income, menopausal status, body mass index, supplement use, physical activity, and energy intake. Conclusions: Higher intakes of vitamin C and linoleic acid and lower intakes of fats and carbohydrates are associated with better skin-aging appearance. Promoting healthy dietary behaviors may have additional benefit for skin appearance in addition to other health outcomes in the population. Am J Clin Nutr 2007;86: 1225-31
Microplastic ingestion ubiquitous in marine turtles
Despite concerns regarding the environmental impacts of microplastics, knowledge of the incidence and levels of synthetic particles in large marine vertebrates is lacking. Here, we utilize an optimized enzymatic digestion methodology, previously developed for zooplankton, to explore whether synthetic particles could be isolated from marine turtle ingesta. We report the presence of synthetic particles in every turtle subjected to investigation (n = 102) which included individuals from all seven species of marine turtle, sampled from three ocean basins (Atlantic [ATL]: n = 30, four species; Mediterranean (MED): n = 56, two species; Pacific (PAC): n = 16, five species). Most particles (n = 811) were fibres (ATL: 77.1% MED: 85.3% PAC: 64.8%) with blue and black being the dominant colours. In lesser quantities were fragments (ATL: 22.9%: MED: 14.7% PAC: 20.2%) and microbeads (4.8%; PAC only; to our knowledge the first isolation of microbeads from marine megavertebrates). Fourier transform infrared spectroscopy (FTāIR) of a subsample of particles (n = 169) showed a range of synthetic materials such as elastomers (MED: 61.2%; PAC: 3.4%), thermoplastics (ATL: 36.8%: MED: 20.7% PAC: 27.7%) and synthetic regenerated cellulosic fibres (SRCF; ATL: 63.2%: MED: 5.8% PAC: 68.9%). Synthetic particles being isolated from species occupying different trophic levels suggest the possibility of multiple ingestion pathways. These include exposure from polluted seawater and sediments and/or additional trophic transfer from contaminated prey/forage items. We assess the likelihood that microplastic ingestion presents a significant conservation problem at current levels compared to other anthropogenic threats
The rapid development of a novel kidney-specific digital intervention for self-management of physical activity and emotional well-being during the COVID-19 pandemic and beyond: Kidney Beam
King's College Hospital; Kidney Research UK; Beam; National Institute for Health Research (NIHR) under (NIHR301893), (NIHR301593), and (ICA-CL-2017-03-020)
- ā¦