28,326 research outputs found
Uncertainty-Aware Organ Classification for Surgical Data Science Applications in Laparoscopy
Objective: Surgical data science is evolving into a research field that aims
to observe everything occurring within and around the treatment process to
provide situation-aware data-driven assistance. In the context of endoscopic
video analysis, the accurate classification of organs in the field of view of
the camera proffers a technical challenge. Herein, we propose a new approach to
anatomical structure classification and image tagging that features an
intrinsic measure of confidence to estimate its own performance with high
reliability and which can be applied to both RGB and multispectral imaging (MI)
data. Methods: Organ recognition is performed using a superpixel classification
strategy based on textural and reflectance information. Classification
confidence is estimated by analyzing the dispersion of class probabilities.
Assessment of the proposed technology is performed through a comprehensive in
vivo study with seven pigs. Results: When applied to image tagging, mean
accuracy in our experiments increased from 65% (RGB) and 80% (MI) to 90% (RGB)
and 96% (MI) with the confidence measure. Conclusion: Results showed that the
confidence measure had a significant influence on the classification accuracy,
and MI data are better suited for anatomical structure labeling than RGB data.
Significance: This work significantly enhances the state of art in automatic
labeling of endoscopic videos by introducing the use of the confidence metric,
and by being the first study to use MI data for in vivo laparoscopic tissue
classification. The data of our experiments will be released as the first in
vivo MI dataset upon publication of this paper.Comment: 7 pages, 6 images, 2 table
The Equivalence Theorem in Effective Theories
The famous equivalence theorem is reexamined in order to make it applicable
to the case of intrinsically quantum infinite-component effective theories. We
slightly modify the formulation of this theorem and prove it basing on the
notion of generating functional for Green functions. This allows one to trace
(directly in terms of graphs) the mutual cancelation of different groups of
contributions.Comment: 21 pages, 7 figures; v2: Section 4 is modified, plus minor
corrections in other sections, version accepted for publication in PR
Functional imaging reveals working memory and attention interact to produce the attentional blink
Copyright @ 2012 Massachusetts Institute of Technology PressIf two centrally presented visual stimuli occur within approximately half a second of each other, the second target often fails to be reported correctly. This effect, called the attentional blink (AB; Raymond, J. E., Shapiro, K. L., & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology, Human Perception and Performance, 18, 849-860, 1992], has been attributed to a resource "bottleneck," likely arising as a failure of attention during encoding into or retrieval from visual working memory (WM). Here we present participants with a hybrid WM-AB study while they undergo fMRI to provide insight into the neural underpinnings of this bottleneck. Consistent with a WM-based bottleneck account, fronto-parietal brain areas exhibited a WM load-dependent modulation of neural responses during the AB task. These results are consistent with the view that WM and attention share a capacity-limited resource and provide insight into the neural structures that underlie resource allocation in tasks requiring joint use of WM and attention.This research was supported by a project grant (071944) from the Wellcome Trust to Kimron Shapiro
Multispecies virial expansions
We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs
A Population of Teraelectronvolt Pulsar Wind Nebulae in the H.E.S.S. Galactic Plane Survey
The most numerous source class that emerged from the H.E.S.S. Galactic Plane
Survey are Pulsar Wind Nebulae (PWNe). The 2013 reanalysis of this survey,
undertaken after almost 10 years of observations, provides us with the most
sensitive and most complete census of gamma-ray PWNe to date. In addition to a
uniform analysis of spectral and morphological parameters, for the first time
also flux upper limits for energetic young pulsars were extracted from the
data. We present a discussion of the correlation between energetic pulsars and
TeV objects, and their respective properties. We will put the results in
context with the current theoretical understanding of PWNe and evaluate the
plausibility of previously non-established PWN candidates.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil
Precise location of Sagittarius X ray sources with a rocket-borne rotating modulation collimator
Precise location of Sagittarius X ray sources with rocket-borne rotating modulation collimato
- …