1,094 research outputs found
A Relational Event Approach to Modeling Behavioral Dynamics
This chapter provides an introduction to the analysis of relational event
data (i.e., actions, interactions, or other events involving multiple actors
that occur over time) within the R/statnet platform. We begin by reviewing the
basics of relational event modeling, with an emphasis on models with piecewise
constant hazards. We then discuss estimation for dyadic and more general
relational event models using the relevent package, with an emphasis on
hands-on applications of the methods and interpretation of results. Statnet is
a collection of packages for the R statistical computing system that supports
the representation, manipulation, visualization, modeling, simulation, and
analysis of relational data. Statnet packages are contributed by a team of
volunteer developers, and are made freely available under the GNU Public
License. These packages are written for the R statistical computing
environment, and can be used with any computing platform that supports R
(including Windows, Linux, and Mac).
Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 h fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism
There is growing interest in the potential health benefits of diets that involve regular periods of fasting. While animal studies have provided compelling evidence that feeding patterns such as alternate-day fasting can increase longevity and reduce incidence of many chronic diseases, the evidence from human studies is much more limited and equivocal. Additionally, although several candidate processes have been proposed to contribute to the health benefits observed in animals, the precise molecular mechanisms responsible remain to be elucidated. The study described here examined the effects of an extended fast on gene transcript profiles in peripheral blood mononuclear cells from ten apparently healthy subjects, comparing transcript profiles after an overnight fast, sampled on four occasions at weekly intervals, with those observed on a single occasion after a further 24 h of fasting. Analysis of the overnight fasted data revealed marked inter-individual differences, some of which were associated with parameters such as gender and subject body mass. For example, a striking positive association between body mass index and the expression of genes regulated by type 1 interferon was observed. Relatively subtle changes were observed following the extended fast. Nonetheless, the pattern of changes was consistent with stimulation of fatty acid oxidation, alterations in cell cycling and apoptosis and decreased expression of key pro-inflammatory genes. Stimulation of fatty acid oxidation is an expected response, most likely in all tissues, to fasting. The other processes highlighted provide indications of potential mechanisms that could contribute to the putative beneficial effects of intermittent fasting in humans
Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule
N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system
A global method for coupling transport with chemistry in heterogeneous porous media
Modeling reactive transport in porous media, using a local chemical
equilibrium assumption, leads to a system of advection-diffusion PDE's coupled
with algebraic equations. When solving this coupled system, the algebraic
equations have to be solved at each grid point for each chemical species and at
each time step. This leads to a coupled non-linear system. In this paper a
global solution approach that enables to keep the software codes for transport
and chemistry distinct is proposed. The method applies the Newton-Krylov
framework to the formulation for reactive transport used in operator splitting.
The method is formulated in terms of total mobile and total fixed
concentrations and uses the chemical solver as a black box, as it only requires
that on be able to solve chemical equilibrium problems (and compute
derivatives), without having to know the solution method. An additional
advantage of the Newton-Krylov method is that the Jacobian is only needed as an
operator in a Jacobian matrix times vector product. The proposed method is
tested on the MoMaS reactive transport benchmark.Comment: Computational Geosciences (2009)
http://www.springerlink.com/content/933p55085742m203/?p=db14bb8c399b49979ba8389a3cae1b0f&pi=1
Electromagnetically Induced Transparency and Slow Light with Optomechanics
Controlling the interaction between localized optical and mechanical
excitations has recently become possible following advances in micro- and
nano-fabrication techniques. To date, most experimental studies of
optomechanics have focused on measurement and control of the mechanical
subsystem through its interaction with optics, and have led to the experimental
demonstration of dynamical back-action cooling and optical rigidity of the
mechanical system. Conversely, the optical response of these systems is also
modified in the presence of mechanical interactions, leading to strong
nonlinear effects such as Electromagnetically Induced Transparency (EIT) and
parametric normal-mode splitting. In atomic systems, seminal experiments and
proposals to slow and stop the propagation of light, and their applicability to
modern optical networks, and future quantum networks, have thrust EIT to the
forefront of experimental study during the last two decades. In a similar
fashion, here we use the optomechanical nonlinearity to control the velocity of
light via engineered photon-phonon interactions. Our results demonstrate EIT
and tunable optical delays in a nanoscale optomechanical crystal device,
fabricated by simply etching holes into a thin film of silicon (Si). At low
temperature (8.7 K), we show an optically-tunable delay of 50 ns with
near-unity optical transparency, and superluminal light with a 1.4 microseconds
signal advance. These results, while indicating significant progress towards an
integrated quantum optomechanical memory, are also relevant to classical signal
processing applications. Measurements at room temperature and in the analogous
regime of Electromagnetically Induced Absorption (EIA) show the utility of
these chip-scale optomechanical systems for optical buffering, amplification,
and filtering of microwave-over-optical signals.Comment: 15 pages, 9 figure
Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis.
Angiogenesis and the development of a vascular network are required for tumour progression, and they involve the release of angiogenic factors, including vascular endothelial growth factor (VEGF-A), from both malignant and stromal cell types. Infiltration by cells of the myeloid lineage is a hallmark of many tumours, and in many cases the macrophages in these infiltrates express VEGF-A. Here we show that the deletion of inflammatory-cell-derived VEGF-A attenuates the formation of a typical high-density vessel network, thus blocking the angiogenic switch in solid tumours in mice. Vasculature in tumours lacking myeloid-cell-derived VEGF-A was less tortuous, with increased pericyte coverage and decreased vessel length, indicating vascular normalization. In addition, loss of myeloid-derived VEGF-A decreases the phosphorylation of VEGF receptor 2 (VEGFR2) in tumours, even though overall VEGF-A levels in the tumours are unaffected. However, deletion of myeloid-cell VEGF-A resulted in an accelerated tumour progression in multiple subcutaneous isograft models and an autochthonous transgenic model of mammary tumorigenesis, with less overall tumour cell death and decreased tumour hypoxia. Furthermore, loss of myeloid-cell VEGF-A increased the susceptibility of tumours to chemotherapeutic cytotoxicity. This shows that myeloid-derived VEGF-A is essential for the tumorigenic alteration of vasculature and signalling to VEGFR2, and that these changes act to retard, not promote, tumour progression
'Being there' for women with metastatic breast cancer: a pan-European patient survey
BACKGROUND: Understanding their experiences of diagnosis is integral to improving the quality of care for women living with advanced/metastatic breast cancer. METHODS: A survey, initiated in March 2011, was conducted in two stages. First, the views of 47 breast cancer-related patient groups in eight European countries were sought on standards of breast cancer care and unmet needs of patients. Findings were used to develop a patient-centric survey to capture personal experiences of advanced breast cancer to determine insights into the ‘trade-off' between extending overall survival and side effects associated with its treatment. The second online survey was open to women with locally advanced or metastatic breast cancer, or their carers, and responders were recruited through local patient groups. Data were collected via anonymous local language questionnaires. RESULTS: The online stage II survey received a total of 230 responses from 17 European countries: 94% of respondents had locally advanced or metastatic breast cancer and 6% were adult carers. Although the overall experience of care was generally good/excellent (77%), gaps were still perceived in terms of treatment choice and information provision. Treatment choice for patients was felt to be lacking by 32% of responders. In addition, 68% of those who responded would have liked more information about future medical treatments and research, with 57% wishing to receive this information from their oncologist. Two-thirds (66%) of women with advanced breast cancer, or their carers, believed life-extending treatment to be important so that they can spend more time with family and friends, and 67% said that the treatment was worthwhile, despite potential associated side effects. CONCLUSION: These findings show a continuing need to provide women with advanced breast cancer with better information and emphasise the importance that these patients often place on prolonging survival
Missing the Unhealthy? Examining Empirical Validity of Material Deprivation Indices (MDIs) Using a Partial Criterion Variable
This study investigates the empirical validity of the material deprivation indices (MDIs) using a partial criterion variable, namely UHCNIR (unmet health care need due to inadequate resources). This alternative approach helps to assess absolute validity (Type I and II errors) and sources of error in the measurement of poverty for a specific aspect of poverty (in this case inability to receive adequate health care due to affordability problems). A simple mismatch analysis identifies a sizable group, around 1% of the adult EU population, missed by MDIs despite being in UHCNIR. A majority of this 1% experiences not only UHCNIR but also multiple other deprivations, commonly reports having some difficulties making ends meet, and prevalently has a disability or a chronic health problem. The analysis reveals that MDIs miss specifically those "unhealthy poor" since these measures do not include a relevant item, and thus cannot adjust for different needs and costs in health care and account for the distinct poverty experiences of these people. Therefore, the main methodological assumption of MDIs, identifying the people in poverty with only a limited set of key deprivation indicators is not supported by this empirical analysis
Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes
The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users
- …