101 research outputs found

    Paranormal Encounters in Iceland 1150-1400

    Get PDF
    This anthology of international scholarship offers new critical approaches to the study of the many manifestations of the paranormal in the Middle Ages. The guiding principle of the collection is to depart from symbolic or reductionist readings of the subject matter in favor of focusing on the paranormal as human experience and, essentially, on how these experiences are defined by the sources. The authors work with a variety of medieval Icelandic textual sources, including family sagas, legendary sagas, romances, poetry, hagiography and miracles, exploring the diversity of paranormal activity in the medieval North. This volume questions all previous definitions of the subject matter, most decisively the idea of saga realism, and opens up new avenues in saga research.https://scholarworks.wmich.edu/mip_nmw/1004/thumbnail.jp

    Expression differences by continent of origin point to the immortalization process

    Get PDF
    Analysis of recently available microarray expression data sets obtained from immortalized cell lines of the individuals represented in the HapMap project have led to inconclusive comparisons across cohorts with different ancestral continent of origin (ACOO). To address this apparent inconsistency, we applied a novel approach to accentuate population-specific gene expression signatures for the CEU [homogeneous US residents with northern and western European ancestry (HapMap samples)] and YRI [homogenous Yoruba people of Ibadan, Nigeria (HapMap samples)] trios. In this report, we describe how four independent data sets point to the differential expression across ACOO of gene networks implicated in transforming the normal lymphoblast into immortalized lymphoblastoid cells. In particular, Werner syndrome helicase and related genes are differentially expressed between the YRI and CEU cohorts. We further demonstrate that these differences correlate with viral titer and that both the titer and expression differences are associated with ACOO. We use the 14 genes most differentially expressed to construct an ACOO-specific ‘immortalization network’ comprised of 40 genes, one of which show significant correlation with genomic variation (eQTL). The extent to which these measured group differences are due to differences in the immortalization procedures used for each group or reflect ACOO-specific biological differences remains to be determined. That the ACOO group differences in gene expression patterns may depend strongly on the process of transforming cells to establish immortalized lines should be considered in such comparisons

    Expression and Functional Studies of Ubiquitin C-Terminal Hydrolase L1 Regulated Genes

    Get PDF
    Deubiquitinating enzymes (DUBs) have been increasingly implicated in regulation of cellular processes, but a functional role for Ubiquitin C-terminal Hydrolases (UCHs), which has been largely relegated to processing of small ubiquitinated peptides, remains unexplored. One member of the UCH family, UCH L1, is expressed in a number of malignancies suggesting that this DUB might be involved in oncogenic processes, and increased expression and activity of UCH L1 have been detected in EBV-immortalized cell lines. Here we present an analysis of genes regulated by UCH L1 shown by microarray profiles obtained from cells in which expression of the gene was inhibited by RNAi. Microarray data were verified with subsequent real-time PCR analysis. We found that inhibition of UCH L1 activates genes that control apoptosis, cell cycle arrest and at the same time suppresses expression of genes involved in proliferation and migration pathways. These findings are complemented by biological assays for apoptosis, cell cycle progression and migration that support the data obtained from microarray analysis, and suggest that the multi-functional molecule UCH L1 plays a role in regulating principal pathways involved in oncogenesis

    Genome-Wide RNAi Screen in IFN-γ-Treated Human Macrophages Identifies Genes Mediating Resistance to the Intracellular Pathogen Francisella tularensis

    Get PDF
    Interferon-gamma (IFN-γ) inhibits intracellular replication of Francisella tularensis in human monocyte-derived macrophages (HMDM) and in mice, but the mechanisms of this protective effect are poorly characterized. We used genome-wide RNA interference (RNAi) screening in the human macrophage cell line THP-1 to identify genes that mediate the beneficial effects of IFN-γ on F. tularensis infection. A primary screen identified ∼200 replicated candidate genes. These were prioritized according to mRNA expression in IFN-γ-primed and F. tularensis-challenged macrophages. A panel of 20 top hits was further assessed by re-testing using individual shRNAs or siRNAs in THP-1 cells, HMDMs and primary human lung macrophages. Six of eight validated genes tested were also found to confer resistance to Listeria monocytogenes infection, suggesting a broadly shared host gene program for intracellular pathogens. The F. tularensis-validated hits included ‘druggable’ targets such as TNFRSF9, which encodes CD137. Treating HMDM with a blocking antibody to CD137 confirmed a beneficial role of CD137 in macrophage clearance of F. tularensis. These studies reveal a number of important mediators of IFN-γ activated host defense against intracellular pathogens, and implicate CD137 as a potential therapeutic target and regulator of macrophage interactions with Francisella tularensis

    Transcriptome Characterization by RNA-seq Unravels the Mechanisms of Butyrate-Induced Epigenomic Regulation in Bovine Cells

    Get PDF
    Short-chain fatty acids (SCFAs), especially butyrate, affect cell differentiation, proliferation, and motility. Butyrate also induces cell cycle arrest and apoptosis through its inhibition of histone deacetylases (HDACs). In addition, butyrate is a potent inducer of histone hyper-acetylation in cells. Therefore, this SCFA provides an excellent in vitro model for studying the epigenomic regulation of gene expression induced by histone acetylation. In this study, we analyzed the differential in vitro expression of genes induced by butyrate in bovine epithelial cells by using deep RNA-sequencing technology (RNA-seq). The number of sequences read, ranging from 57,303,693 to 78,933,744, were generated per sample. Approximately 11,408 genes were significantly impacted by butyrate, with a false discovery rate (FDR) <0.05. The predominant cellular processes affected by butyrate included cell morphological changes, cell cycle arrest, and apoptosis. Our results provided insight into the transcriptome alterations induced by butyrate, which will undoubtedly facilitate our understanding of the molecular mechanisms underlying butyrate-induced epigenomic regulation in bovine cells

    My article

    No full text

    Principles of combination anti-aging therapy

    No full text

    Supplemental File 4SB - regression models for NSHAP

    No full text
    Supplemental File 4SB, Regression model for NSHA

    Supplemental File S1

    No full text
    Supporting information for reduced dementia group

    Supplemental File S3 - Clinical trial analysis

    No full text
    Supplemental File S3 - Clinical trial analysi
    corecore