8 research outputs found

    Computational modeling reveals molecular details of epidermal growth factor binding

    Get PDF
    BACKGROUND: The ErbB family of receptors are dysregulated in a number of cancers, and the signaling pathway of this receptor family is a critical target for several anti-cancer drugs. Therefore a detailed understanding of the mechanisms of receptor activation is critical. However, despite a plethora of biochemical studies and recent single particle tracking experiments, the early molecular mechanisms involving epidermal growth factor (EGF) binding and EGF receptor (EGFR) dimerization are not as well understood. Herein, we describe a spatially distributed Monte Carlo based simulation framework to enable the simulation of in vivo receptor diffusion and dimerization. RESULTS: Our simulation results are in agreement with the data from single particle tracking and biochemical experiments on EGFR. Furthermore, the simulations reveal that the sequence of receptor-receptor and ligand-receptor reaction events depends on the ligand concentration, receptor density and receptor mobility. CONCLUSION: Our computer simulations reveal the mechanism of EGF binding on EGFR. Overall, we show that spatial simulation of receptor dynamics can be used to gain a mechanistic understanding of receptor activation which may in turn enable improved cancer treatments in the future

    MAPK Cascade Possesses Decoupled Controllability of Signal Amplification and Duration

    Get PDF
    AbstractThe three important characteristics of the output signal of mitogen activated protein kinase (MAPK) cascade are time delay between stimulus and response, amplitude gain, and duration of the output signal. In this study, we performed a sensitivity analysis on the computational model of epidermal growth factor receptor (EGFR) activated MAPK cascade developed by Schoeberl and co-workers (1) to identify the sensitive steps of the pathway affecting these characteristics. We show that the signaling network is sensitive in a decoupled manner, which provides the ability to control its output amplitude and duration one at a time. Signal duration is found sensitive only to the phosphatase reactions at the MEK level. In contrast, signal amplitude is found most sensitive to the phosphatase reactions at the ERK level. Time delay is found to be a robust characteristic of the system

    Heterogeneities in EGF receptor density at the cell surface can lead to concave up scatchard plot of EGF binding

    Get PDF
    AbstractThe mechanism responsible for the concave up nature of the Scatchard plot of epidermal growth factor (EGF) binding on EGF receptor (EGFR) has been a controversial issue for more than a decade. Past efforts to mechanistically simulate the concave up nature of the Scatchard plot of EGF binding have shown that negative cooperativity in EGF binding on an EGFR dimer or inclusion of some external site or binding event can describe this behavior. However, herein we show that heterogeneity in the density of EGFR due to localization in certain regions of the plasma membrane, which has been experimentally reported, can also lead to concave up shape of the Scatchard plot of the EGF binding on EGFR
    corecore