766 research outputs found

    Primitive erythropoiesis in early chick embryogenesis. II. Correlation between hemoglobin synthesis and the mitotic history.

    Get PDF
    Primitive erythroblasts in the circulating blood of the chick embryo continue to divide while synthesizing hemoglobin (Hb). Hb measurements on successive generations of erythroblasts show that there is a progressive increase in the Hb content of both interphase and metaphase cells. Furthermore, for any given embryo the Hb content of metaphase cells is always significantly greater than that of interphase cells. The distribution of Hb values for metaphase cells suggests that there are six Hb classes corresponding to the number of cell cycles in the proliferative phase. The location of erythroblasts in the cell cycle was determined by combining Feulgen cytophotometry with thymidine radioautography on the same cells. Measurements of the Hb content for erythroblasts in different compartments of the cell cycle (G1, S, G2, and M) show a progressive increase through the cycle. Thus, the amount of Hb per cell is a function of the number of cell divisions since the initiation of Hb synthesis and, to a lesser degree, the stage of the cell cycle. Earlier generations of erythroblasts synthesize Hb at a faster rate than the terminal generation. Several models have been proposed to explain these findings

    Nova Scorpii 1941 (V697 Sco): A Probable Intermediate Polar

    Get PDF
    V697 Sco, the remnant of Nova Scorpii 1941 and currently at V ~ 20.0, is found from photometric observations to have the characteristics of an intermediate polar (IP) with an orbital period (Porb) of 4.49 h and a rotation period (Prot) of 3.31 h. It therefore appears to be a member of the rare class of IPs where Prot ~ Porb, which are probably discless systems. The prominence of the modulation at 0.5 Prot, and its orbital sidebands, indicates two-pole accretion.Comment: To appear in the November 2002 issue of PAS

    Challenging empowerment: AIDS-affected southern African children and the need for a multi-level relational approach

    Get PDF
    Critics of empowerment have highlighted the concept's mutability, focus on individual transformation, one-dimensionality and challenges of operationalisation. Relating these critiques to children's empowerment raises new challenges. Drawing on scholarship on children's subjecthood and exercise of power, alongside empirical research with children affected by AIDS, I argue that empowerment envisaged as individual self-transformation and increased capacity to act independently offers little basis for progressive change. Rather it is essential to adopt a relational approach that recognises the need to transform power relationships at multiple levels. This analysis has implications for our wider understanding of empowerment in the 21st century. © The Author(s) 2013.This research was funded by DFID

    Children, family and the state : revisiting public and private realms

    Get PDF
    The state is often viewed as part of the impersonal public sphere in opposition to the private family as a locus of warmth and intimacy. In recent years this modernist dichotomy has been challenged by theoretical and institutional trends which have altered the relationship between state and family. This paper explores changes to both elements of the dichotomy that challenge this relationship: a more fragmented family structure and more individualised and networked support for children. It will also examine two new elements that further disrupt any clear mapping between state/family and public/private dichotomies: the third party role of the child in family/state affairs and children's application of virtual technology that locates the private within new cultural and social spaces. The paper concludes by examining the rise of the 'individual child' hitherto hidden within the family/state dichotomy and the implications this has for intergenerational relations at personal and institutional levels

    Growth of a thrust fault array in space and time: An example from the deep-water Niger delta

    Get PDF
    The temporal and spatial evolution of thrust fault arrays is currently poorly understood, and marine fold and thrust belts at the toe of passive margin gravitational systems, imaged by commercial 3D seismic reflection datasets, afford a unique opportunity to investigate this problem in three dimensions. Using an extensive 3D seismic data set and age data, the total cumulative strain (shortening) and interval strain rates have been calculated for 11 thrust-related folds mapped in the toe-thrust region of the southern lobe of the Niger Delta. For the first time, the sequence of thrust nucleation, propagation and linkage through time at a scale of 10 s km both along and across strike is documented. Short thrust segments had nucleated throughout the entire study area by 15 Ma. They then grew largely by lateral growth and linkage, increasing the fault trace length and generating asymmetric strain-distance plots, for the first 50% of their history. Thereafter, growth continued by shortening, with minimal along strike increase in fault length. Changes in shortening-distance data between adjacent structures across strike suggest that the change in growth mode occurred once the thrusts had linked in 3D through the common underlying detachment. Over the entire thrust array the strain rate varies through time, starting slowly (<200 m/Ma), then increasing between 9.5 and 3.7 Ma (200–400 m/Ma) before slowing down in the last ∼ 4 Ma (<150 m/Ma). The variation in strain rate is attributed to a change in boundary conditions of the gravitational system. An increase in sediment supply to the delta occurred in the late Miocene-Pliocene, driving higher shortening rates in the toe area. A subsequent reduction in sediment supply in the last ∼4 Ma led to a reduction in deformation rate and the cessation of activity on a number of the thrusts. Predictions of the critical taper wedge model are used to explain the near-synchronous growth of the entire thrust array over the last 15 Ma. Because sedimentation acts to lower the surface slope, the wedge can only continue to deform if shortening occurs over a wide area allowing the surface slope to build up. These new results suggest that models of piggyback fault propagation are not appropriate for deep-water fold and thrust belts

    Beings in their own right? Exploring Children and young people's sibling and twin relationships in the Minority World

    Get PDF
    This paper examines the contributions that the sociological study of sibship and twinship in the Minority World can make to childhood studies. It argues that, in providing one forum within which to explore children and young people's social relationships, we can add to our understanding of children and young people's interdependence and develop a more nuanced understanding of agency. As emergent subjects, children, young people and adults are in a process of ‘becoming’. However, this does not mean that they can ‘become’ anything they choose to. The notion of negotiated interdependence (Punch 2002) is useful in helping us to grasp the contingent nature of children and young people's agency

    Reconciling bathymetric and stratigraphic expressions of submarine channel geometry

    Get PDF
    Modern submarine channels form distinctive morphological features on the seafloor and play a critical role in shaping the marine sedimentary record. Recent studies have captured the extremely diverse range of cross-sectional geometries in submarine channels from bathymetric data, which typically display aspect ratios markedly different to the stratigraphic record of ancient submarine channels. Here, we compare and reconcile the relationship between the geomorphic expression of submarine channels as observed on the seafloor and the geometry of their stratigraphic bodies as mapped in seismic-reflection data, using the Niger Delta slope an exemplar. For the same channels, our data allows us to contrast the distribution of widths, depths, and aspect ratios from bathymetric data and at two hierarchical scales in the underlying stratigraphy – the channel element and channel system scale. Channel characteristics are also contextualised with respect to two key variables, the underlying structural template and the relative timescale for which the studied systems have been active. Analysis of the seafloor bankfull geometries highlights substantial variability with widths ranging from ∼300 m to ∼4 km and aspect ratios from ∼10:1–100:1. In contrast, the geometry of stratigraphic channel element bodies remains remarkably consistent across the three channels with widths ∼480–620 m and aspect ratios of ∼9:1. At channel system scale stratigraphic width is comparable to that seen in the bathymetric data, but with aspect ratios of 6–23:1. Our results therefore highlight a marked disparity in the cross-sectional geometries on the present-day seafloor and for their associated channels in the stratigraphic record. We demonstrate that a large part of the disparity between modern and ancient submarine channel geometries may be explained by post-abandonment modification of the seabed channels where there is reduced Holocene activity and we argue this effect likely plays a role in the differences seen in global data sets. These results have significant implications for the use of bankfull process analogues when applied to bathymetric data to estimate submarine channel flow characteristics

    New models for submarine channel deposits on structurally complex slopes: Examples from the Niger delta system

    Get PDF
    Submarine channel complexes are often described as having a two-phase stratigraphic evolution where an initial phase of migration is followed by aggradation, generating a ‘hockey-stick shaped’ channel trajectory. However, the role of tectonic forcing in modifying time-integrated sedimentary architectures remains poorly understood. Here, we evaluate how tectonically driven changes in slope modify the evolution—both in terms of morphology and stratigraphic architecture—of submarine channels across a range of spatial scales from the fundamental architectural unit, a channel element, to the scale of a channel complex set, using examples from the Niger Delta system. From a 3D, time-migrated seismic reflection volume, we use amplitude extractions, frequency decomposition and RGB blending to determine channel stratigraphic architectures. These observations are used systematically to evaluate the development of cross-sectional and planform architectures as the channel systems interact with a range of active and pre-existing structural bathymetry. Our results indicate that while a channel complex's stratigraphic architecture may be captured by a two-phase evolution on unstructured slopes, this model fails on structurally complex slopes. Unstructured slope channel complexes display a repeated arrangement of migration dominating the early stratigraphic record and subsequent aggradation. The late aggradational phase signals a decrease in the rate of growth in channel complex width and the rate of change in sinuosity relative to aggradation throughout the complex's development. However, tectonically driven changes in sinuosity and the relative rates of channel migration and aggradation modify complex development significantly. We identify three end-member styles of channel-structure interaction, determined by the timing of bathymetry development and its associated style: (1) pre-channel structural bathymetry; (2) coeval positive relief, and (3) coeval negative relief. Where structural relief pre-dates channel inception, a principal adjustment is in the initial channel course with early channel elements being forced around positive relief of the structure, generating long-wavelength bends in the complex's course. Where structure continues to modify slope creating positive and negative bathymetry during complex development, migration and bend development continue with complex width and channel element sinuosity increasing until abandonment. These observations demonstrate that submarine channel architecture and planform are highly sensitive to tectonic perturbation and we use these results to generate graphical models that show predicted architectural evolution of submarine channels on structurally complex slopes in general

    New statistical quantification of the impact of active deformation on the distribution of submarine channels

    Get PDF
    Submarine channel systems play a crucial role in governing the delivery of sediments and pollutants such as plastics from the shelf edge to deep water. Understanding their distribution in space and time is important for constraining the locus, magnitude, and characteristics of deep-water sedimentation and for predicting stratigraphic architectures and depositional facies. Using three-dimensional seismic reflection data covering the outer fold-and-thrust belt of the Niger Delta, we determined the pathways of Miocene to Pliocene channels that crossed, at 173 locations, 11 fold-thrust structures for which the temporal and spatial evolution of strain rates has been constrained over a period of 11 m.y. We use a statistical approach to quantify strain and shortening rate distributions recorded where channels have crossed structures compared to the fault array as a whole. Our results prove unambiguously that these distributions are different. The median strain rate where channels cross faults is 1%/m.y. Our results quantify the sensitivity of submarine channels to active deformation at a population level for the first time and enable us to predict the temporal and spatial routing of submarine channels affected by structurally driven topography
    • …
    corecore