64 research outputs found

    Activity-dependent NPAS4 expression and the regulation of gene programs underlying plasticity in the central nervous system

    Get PDF
    The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable. Copyright © 2013 José Fernando Maya-Vetencourt

    Visual cortex plasticity: A complex interplay of genetic and environmental influences

    Get PDF
    The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition to the remarkable variety of transcription factors and their combinatorial interaction at specific gene promoters, epigenetic mechanisms that regulate transcription have emerged as conserved processes by which the nervous system accomplishes the induction of plasticity. Experience-depenDent changes of DNA methylation patterns and histone posttranslational modifications are, in fact, recruited as targets of plasticity-associated signal transduction mechanisms. Here, we shall concentrate on structural and functional consequences of early sensory deprivation in the visual system and discuss how intracellular signal transduction pathways associated with experience regulate changes of chromatin structure and gene expression patterns that unDerlie these plastic phenomena. Recent experimental eviDence for mechanisms of cross-modal plasticity following congenital or acquired sensory deprivation both in human and animal models will be consiDered as well. We shall also review different experimental strategies that can be used to achieve the recovery of sensory functions after long-term deprivation in humans. © Copyright 2012 José Fernando Maya-Vetencourt and Nicola Origlia

    Adult reversal of cognitive phenotypes in neurodevelopmental disorders

    Get PDF
    Recent findings in mice suggest that it is possible to reverse certain neurodevelopmental disorders in adults. Changes in development, previously thought to be irreparable in adults, were believed to underlie the neurological and psychiatric phenotypes of a range of common mental health problems with a clear developmental component. As a consequence, most researchers have focused their efforts on understanding the molecular and cellular processes that alter development with the hope that early intervention could prevent the emergent pathology. Unexpectedly, several different animal model studies published recently, including animal models of autism, suggest that it may be possible to reverse neurodevelopmental disorders in adults: Addressing the underlying molecular and cellular deficits in adults could in several cases dramatically improve the neurocognitive phenotypes in these animal models. The findings reviewed here provide hope to millions of individuals afflicted with a wide range of neurodevelopmental disorders, including autism, since they suggest that it may be possible to treat or even cure them in adults

    Restoring brain function after stroke - bridging the gap between animals and humans

    Get PDF
    Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke

    Analysis of two methods of isometric muscle contractions during the anti-G straining maneuver

    Full text link
    This study investigated the difference in Mean Arterial Pressure (MAP) and Cardiac Output (CO) between two methods of isometric muscle contractions during the Anti-G Straining Maneuver (AGSM). 12 subjects (ages 18 to 38 yrs, height 176.8 +/- 7.4 cm, body mass 78.8 +/- 15.6 kg, percent body fat 14.3 +/- 6.6%) participated in the study. The study was a one-way within-subject design with test conditions counterbalanced. Two methods of isometric muscle contractions lasting 30 seconds each were assessed; an isometric push contraction and an isometric muscle tensing contraction. The dependent parameters were MAP and CO. The average MAP during the push contraction was 123 mmHg, SD +/- 11 and for tense was 118 mmHg, SD +/- 8. CO was 7.6 L/min, SD +/- 1.6 for push and 7.9 L/min, SD +/- 2.0 for tense method. Dependent t-tests revealed t(11) = 1.517, p = 0.157 for MAP and t(11) = 0.875, p = 0.400 for CO. This study demonstrated that the two methods of isometric muscle contractions were not statistically different with regards to MAP and CO. Therefore, both forms of isometric contractions may be potentially useful when performing the muscle contraction portion of the AGSM

    Acute neuroprotection by the synaptic blocker botulinum neurotoxin E in a rat model of focal cerebral ischaemia

    No full text
    Evidence indicates that accumulation of excitotoxic mediators, such as glutamate, contributes to neuronal damage after an ischaemic insult. It is not clear, however, whether this accumulation is due to excess synaptic release or to impaired uptake. To test a role for synaptic release, here we investigated the neuroprotective potential of the synaptic blocker botulinum neurotoxin E (BoNT/E), that prevents vesicle fusion via the cleavage of the SNARE (soluble NSF-attachment receptor) protein SNAP-25 (synaptosomal-associated protein of 25 kDa). Focal ischaemia was induced in vivo by infusing the potent vasoconstricting peptide endothelin-1 (ET-1) into the CA1 area of the hippocampus in adult rats; BoNT/E or vehicle were administered into the same site 20 min later. Injection of ET-1 was found to produce a transient and massive increase in glutamate release that was potently antagonized by BoNT/E. To assess whether blocking transmitter release translates into neuroprotection, the extent of the ischaemic damage was determined 24 h and 6 weeks after the insult. We found that BoNT/E administration consistently reduced the loss of CA1 pyramidal neurons at 24 h. The neuroprotective effect of BoNT/E, however, was no longer significant at 6 weeks. These data provide evidence that blockade of synaptic transmitter release delays neuronal cell death following focal brain ischaemia, and underline the importance of assessing long-term neuroprotection in experimental stroke studies

    Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats

    No full text
    Cortical circuitries are highly sensitive to experience during early life but this phase of heightened plasticity decreases with development. We recently demonstrated that fluoxetine reinstates a juvenile-like form of plasticity in the adult visual system. Here we explored cellular and molecular mechanisms that underlie the occurrence of these plastic phenomena. Adult rats were intracortically treated with serotonin (5-HT) whereas long-term fluoxetine-treated rats were infused with the 5-HT1A-receptor antagonist WAY-100635, brain-derived neurotrophic factor (BDNF) scavenger trkB-IgG or the mitogen-activated protein kinase inhibitor U0126. Plasticity was assessed as variations of visual cortex responsiveness after unilateral eyelid suture and reverse occlusion by using an electrophysiological approach. Real-time PCR and chromatin immunoprecipitation analysis were then used to explore alterations in gene expression and modifications of chromatin structure associated with the plastic outcome caused by fluoxetine in the visual system. Local infusion of 5-HT into visual cortex restored susceptibility to monocular deprivation in adulthood whereas infusion of WAY-100635, trkB-IgG or U0126 prevented the process of plasticity reactivation in fluoxetine-treated animals. Long-term fluoxetine treatment promoted a transient increase of Bdnf expression in the visual cortex, which was paralleled by an increased histone acetylation status at Bdnf promoter regions and by decreased expression of Hdac5. Accordingly, enhancing histone acetylation levels by systemic treatment with Trichostatin-A reactivated plasticity in the adult while WAY-100635-infusion prevented epigenetic modifications in Bdnf promoter areas. The data suggest a key role for 5-HT1Areceptor and BDNF-trkB signalling in driving a transitory epigenetic remodelling of chromatin structure that underlies the reactivation of plasticity in the visual system. © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
    corecore