1,546 research outputs found

    Induction of stable human FOXP3<sup>+</sup> Tregs by a parasite-derived TGF-β mimic

    Get PDF
    Immune homeostasis in the intestine is tightly controlled by FOXP3 + regulatory T cells (Tregs), defects of which are linked to the development of chronic conditions, such as inflammatory bowel disease (IBD). As a mechanism of immune evasion, several species of intestinal parasites boost Treg activity. The parasite Heligmosomoides polygyrus is known to secrete a molecule (Hp-TGM) that mimics the ability of TGF-β to induce FOXP3 expression in CD4 + T cells. The study aimed to investigate whether Hp-TGM could induce human FOXP3 + Tregs as a potential therapeutic approach for inflammatory diseases. CD4 + T cells from healthy volunteers were expanded in the presence of Hp-TGM or TGF-β. Treg induction was measured by flow cytometric detection of FOXP3 and other Treg markers, such as CD25 and CTLA-4. Epigenetic changes were detected using ChIP-Seq and pyrosequencing of FOXP3. Treg phenotype stability was assessed following inflammatory cytokine challenge and Treg function was evaluated by cellular co-culture suppression assays and cytometric bead arrays for secreted cytokines. Hp-TGM efficiently induced FOXP3 expression (&gt; 60%), in addition to CD25 and CTLA-4, and caused epigenetic modification of the FOXP3 locus to a greater extent than TGF-β. Hp-TGM-induced Tregs had superior suppressive function compared with TGF-β-induced Tregs, and retained their phenotype following exposure to inflammatory cytokines. Furthermore, Hp-TGM induced a Treg-like phenotype in in vivo differentiated Th1 and Th17 cells, indicating its potential to re-program memory cells to enhance immune tolerance. These data indicate Hp-TGM has potential to be used to generate stable human FOXP3 + Tregs to treat IBD and other inflammatory diseases. </p

    T-Analyst: a program for efficient analysis of protein conformational changes by torsion angles

    Get PDF
    T-Analyst is a user-friendly computer program for analyzing trajectories from molecular modeling. Instead of using Cartesian coordinates for protein conformational analysis, T-Analyst is based on internal bond-angle-torsion coordinates in which internal torsion angle movements, such as side-chain rotations, can be easily detected. The program computes entropy and automatically detects and corrects angle periodicity to produce accurate rotameric states of dihedrals. It also clusters multiple conformations and detects dihedral rotations that contribute hinge-like motions. Correlated motions between selected dihedrals can also be observed from the correlation map. T-Analyst focuses on showing changes in protein flexibility between different states and selecting representative protein conformations for molecular docking studies. The program is provided with instructions and full source code in Perl

    Systematic Evaluation of Candidate Blood Markers for Detecting Ovarian Cancer

    Get PDF
    Epithelial ovarian cancer is a significant cause of mortality both in the United States and worldwide, due largely to the high proportion of cases that present at a late stage, when survival is extremely poor. Early detection of epithelial ovarian cancer, and of the serous subtype in particular, is a promising strategy for saving lives. The low prevalence of ovarian cancer makes the development of an adequately sensitive and specific test based on blood markers very challenging. We evaluated the performance of a set of candidate blood markers and combinations of these markers in detecting serous ovarian cancer.We selected 14 candidate blood markers of serous ovarian cancer for which assays were available to measure their levels in serum or plasma, based on our analysis of global gene expression data and on literature searches. We evaluated the performance of these candidate markers individually and in combination by measuring them in overlapping sets of serum (or plasma) samples from women with clinically detectable ovarian cancer and women without ovarian cancer. Based on sensitivity at high specificity, we determined that 4 of the 14 candidate markers--MUC16, WFDC2, MSLN and MMP7--warrant further evaluation in precious serum specimens collected months to years prior to clinical diagnosis to assess their utility in early detection. We also reported differences in the performance of these candidate blood markers across histological types of epithelial ovarian cancer.By systematically analyzing the performance of candidate blood markers of ovarian cancer in distinguishing women with clinically apparent ovarian cancer from women without ovarian cancer, we identified a set of serum markers with adequate performance to warrant testing for their ability to identify ovarian cancer months to years prior to clinical diagnosis. We argued for the importance of sensitivity at high specificity and of magnitude of difference in marker levels between cases and controls as performance metrics and demonstrated the importance of stratifying analyses by histological type of ovarian cancer. Also, we discussed the limitations of studies (like this one) that use samples obtained from symptomatic women to assess potential utility in detection of disease months to years prior to clinical detection

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore