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Abstract

Immune homeostasis in the intestine is tightly controlled by FOXP3+

regulatory T cells (Tregs), defects of which are linked to the development of

chronic conditions, such as inflammatory bowel disease (IBD). As a mechanism

of immune evasion, several species of intestinal parasites boost Treg activity.

The parasite Heligmosomoides polygyrus is known to secrete a molecule (Hp-

TGM) that mimics the ability of TGF-b to induce FOXP3 expression in CD4+

T cells. The study aimed to investigate whether Hp-TGM could induce human

FOXP3+ Tregs as a potential therapeutic approach for inflammatory diseases.

CD4+ T cells from healthy volunteers were expanded in the presence of Hp-

TGM or TGF-b. Treg induction was measured by flow cytometric detection of

FOXP3 and other Treg markers, such as CD25 and CTLA-4. Epigenetic

changes were detected using ChIP-Seq and pyrosequencing of FOXP3. Treg

phenotype stability was assessed following inflammatory cytokine challenge and

Treg function was evaluated by cellular co-culture suppression assays and

cytometric bead arrays for secreted cytokines. Hp-TGM efficiently induced

FOXP3 expression (> 60%), in addition to CD25 and CTLA-4, and caused

epigenetic modification of the FOXP3 locus to a greater extent than TGF-b.
Hp-TGM-induced Tregs had superior suppressive function compared with

TGF-b-induced Tregs, and retained their phenotype following exposure to

inflammatory cytokines. Furthermore, Hp-TGM induced a Treg-like phenotype

in in vivo differentiated Th1 and Th17 cells, indicating its potential to re-

program memory cells to enhance immune tolerance. These data indicate Hp-

TGM has potential to be used to generate stable human FOXP3+ Tregs to treat

IBD and other inflammatory diseases.

INTRODUCTION

Heligmosomoides polygyrus is a parasitic nematode of

mice that establishes long-term infections in the intestinal

tract and releases a diverse array of excretory/secretory

products (HES), which promotes parasite survival. Like

most parasites, H. polygyrus has evolved several immune

evasion strategies1 including those that inhibit
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inflammatory pathways and promote immunosuppressive

cell populations.2,3 For example, HES contains molecules

that block the cytokine IL-33 and its receptor ST2,4,5

impair dendritic cell function6 and suppress

macrophages.7 Recently, another HES protein was

identified as a TGF-b mimic, termed Hp-TGM

(H. polygyrus TGF-b mimic), which, despite the lack of

sequence homology, triggered mammalian TGF-b
signaling pathways through binding TGF-b receptors.8

Importantly, Hp-TGM induced FOXP3 expression in

both mouse and human CD4+ T cells, with mouse

induced FOXP3+ regulatory T cells (Tregs) shown to

have suppressive function both in vitro8 and in vivo.9

FOXP3+ Tregs have a key role in maintaining self-

tolerance and immune homeostasis and in vivo are

generated in both the thymus and the periphery.10

Peripheral induction of Tregs in the gut is important to

ensure appropriate immune tolerance towards self,

commensal and dietary antigens, a setting in which TGF-

b plays a critical role.11,12 TGF-b signaling is tightly

regulated, being first produced in a latent form that

includes a latency-associated peptide (LAP), which

prevents receptor binding.13 One mechanism of

generating active TGF-b is cleavage via the integrin avb8,
which is expressed by dendritic cells in the gut; active

TGF-b is then able to initiate Treg induction through

binding to the heterodimeric surface receptors, TbRI/
TbRII, on CD4+ T cells.14 Receptor binding initiates

phosphorylation of SMAD2/3 proteins, which form a

complex with SMAD4 that binds to regions in the

promoter of FOXP3 and drive its expression. FOXP3 is

the key master transcription factor of Tregs14 as it

orchestrates the expression of other Treg markers,

resulting in the acquisition of immunosuppressive

functions.15 In contrast to mammalian TGF-b, Hp-TGM
is secreted in an active form and does not require post-

translational processing to activate TGF-b receptor-

mediated signaling.16

The role of TGF-b in inducing Tregs has been known

for over 15 years17,18 and much work has been done to

investigate whether it could be used to generate large

numbers of Tregs in vitro for a cell therapy to induce

immune tolerance.15,19 However, thus far these

approaches have been limited in their ability to generate

Tregs with phenotypic stability. Previous studies that

generated human Tregs in vitro (iTregs) with TGF-b, and
with or without combinations of all-trans retinoic acid

and/or rapamycin, showed that FOXP3 expression and

suppressive function were unstable. Specifically, upon

restimulation in the absence of polarizing conditions

iTregs lost these features, likely due to the fact that the

iTregs did not undergo the epigenetic re-modeling

needed for stable FOXP3 expression.20,21

Here we investigated whether Hp-TGM could induce

human FOXP3+ Tregs and if the induced cells had

superior function or stability compared with TGF-b-
induced Tregs. This knowledge is important to assess the

therapeutic potential of this novel parasite-derived

protein.

RESULTS

Hp-TGM induces FOXP3+ cells with a Treg phenotype

from human na€ıve CD4+ T cells

To test the ability of Hp-TGM vs. TGF-b to induce Tregs,

na€ıve CD4+ T cells were isolated from peripheral blood

(Supplementary figure 1a) and stimulated with artificial

antigen-presenting cells expressing CD80 and CD58 and

loaded with anti-CD3 in the absence or presence of the

indicated cytokine. The majority of published protocols

for TGF-b-induction of human iTregs from na€ıve CD4+ T

cells use between 1 and 5 ng mL�1 of TGF-b.21–23 We

tested TGF-b at concentrations from 1 to 100 ng mL�1

and confirmed that maximal FOXP3 expression (as

determined by both the percentage of positive cells and

MFI) had occurred by 1 ng mL�1 (dose curve data in

Figure 1). This equates to 0.04 nM, as activated TGF-b
exists as a 25 kDa dimer, thus 1 ng mL�1 TGF-b was

selected as our comparison condition for the study. We

found that after 6 days, in the presence of Hp-TGM or

TGF-b, > 50% of CD4+ T cells expressed FOXP3,

compared with a mean of 21% expression in their absence

(Figure 1a). At least 10 ng mL�1 (0.21 nM) of the

46.8 kDa Hp-TGM was required to induce levels of

FOXP3 that were equivalent to 1 ng mL�1 (0.04 nM)

TGF-b (i.e. ~5.25 times more than TGF-b) (Figure 1b).

Analysis of the dose titration results obtained from all

donors, and also in experiments that used anti-CD3/CD28

bead stimulation (Supplementary figure 1 and data not

shown), led us to select 100 ng mL�1 Hp-TGM as the

concentration that most consistently induced maximal

FOXP3 expression and this concentration was used for the

remainder of the study.

Although there was no significant difference between

TGF-b and Hp-TGM in terms of the induced proportion

of FOXP3-expressing cells (Figure 1c), there was a small,

but significant, increase in FOXP3 MFI in Hp-TGM

cultures (Figure 1d). A similar effect was seen for the

induction of two Treg markers CD25 (IL-2Ra) and the

co-inhibitory receptor CTLA-4, for which MFIs were

significantly higher in Hp-TGM cultures compared to

those with TGF-b (Figure 1d). The proportion of

induced FOXP3+ cells remained consistent upon repeated

TCR stimulation and re-addition of Hp-TGM or TGF-b
(Figure 1e), and in Hp-TGM cultures it could be further

2

A TGF-b-mimic induces human FOXP3+ Tregs L Cook et al.



enhanced by the addition of rapamycin, the mammalian

target of rapamycin (mTOR) inhibitor that suppresses

conventional T-cell proliferation24 (Figure 1f).

Similar effects were seen when na€ıve CD4+ T cells were

stimulated with anti-CD3/CD28 beads, although under

these conditions the overall proportions of induced
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Figure 1. Hp-TGM induces FOXP3+ Tregs from na€ıve human CD4+ T cells. Na€ıve CD4+CD8negCD45RA+CD25neg T cells were stimulated without

or with TGF-b or Hp-TGM. (a) Gating and representative expression of FOXP3 after 6 days culture and (b) proportion of FOXP3+ cells and FOXP3

MFI across a range of TGF-b and Hp-TGM concentrations (n = 4), median expression in control cultures is indicated by dotted lines. (c)

Comparison of the percentage of induced FOXP3+ cells (n = 13) and (d) MFI of induced FOXP3, CD25 (n = 13) and CTLA-4 (n = 12) in control,

TGF-b and Hp-TGM cultures. (e) Percentages of FOXP3+ cells were measured at days 6, 14 and 21 (n = 7), restimulation time points are

indicated by vertical dashed lines. (f) Comparison of proportion of FOXP3+ cells in cultures with TGF-b or Hp-TGM without or with rapamycin

(n = 6). Data in c–f used 1 ng mL�1 TGF-b and 100 ng mL�1Hp-TGM. Statistical analyses used Wilcoxon signed rank tests; error bars represent

median � interquartile range, *P ≤ 0.05, ** P ≤ 0.01 and ns, not significant.
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FOXP3+ cells were lower (~30–40% in TGF-b/Hp-TGM
vs. 10% in control cultures; Supplementary figure 1b, c).

Therefore, using two different methods of polyclonal

TCR stimulation, Hp-TGM and TGF-b induced similar

proportions of FOXP3+ cells, with similar dose-responses

(Supplementary figure 1c), but Hp-TGM induced

significantly higher expression of FOXP3, CD25 and

CTLA-4 protein, as measured by MFI. From here on, we

refer to the cultures with induced FOXP3+ cells as TGF-

b- or Hp-TGM-induced Tregs.

Hp-TGM signals via TbRI and SMAD2/3 pathways in

na€ıve CD4+ T cells

We next asked whether, as seen in mice,8 Hp-TGM

signaling required the TGF-b receptor subunit I (TbRI,
the serine/threonine kinase ALK5), and stimulated

phosphorylation of SMAD2/3 in human cells. PBMCs

were cultured in serum-free media (no exogenous TGF-

b) with either TGF-b or Hp-TGM and the levels of

pSMAD2/3 in CD4+ T cells were measured by flow

cytometry. TGF-b rapidly induced pSMAD2/3 after

15 min; stimulation with 100 ng mL�1 of Hp-TGM

required 30 min to observe a similar effect. However,

increasing the concentration of Hp-TGM from 100 to

500 ng mL�1 enabled a more rapid activation of

pSMAD2/3 (Figure 2a). We confirmed that both Hp-

TGM and TGF-b-mediated FOXP3-induction in na€ıve

CD4+ T cells required TbRI signaling as inhibition of this

receptor with the ALK5 kinase inhibitor SB-431542

reduced the proportions of FOXP3+ cells in both Hp-

TGM and TGF-b conditions by approximately 60%

(Figure 2c, d). TbRI inhibition also reduced CD25 and

CTLA-4 expression, with both TGF-b and TGM cultures

having reduced MFIs of approximately 30% (for CD25)

and 20% (for CTLA-4) compared with cultures without

inhibitor added (Figure 2c, d).

Hp-TGM induces epigenetic changes at the FOXP3

locus in na€ıve CD4+ T cells

As we had observed that Hp-TGM-induced FOXP3

expression was maintained in culture, we next asked if

Hp-TGM caused epigenetic changes in the Treg-specific

demethylated region (TSDR) of the FOXP3 locus.

Reduced methylation in this intronic region is associated

with stable FOXP3 expression.25 After 28–32 days in

culture, Hp-TGM- but not TGF-b-induced Tregs had

significantly less methylation in the FOXP3 TSDR

compared with na€ıve T cells expanded with only IL-2

(Figure 3a). We also calculated the percentage loss of

methylation for each sample from matched control

cultures (100 � (TSDR methylation in Hp-TGM culture/

TSDR methylation in control 9 100)), which was greater

in Hp-TGM cultures than TGF-b cultures (P = 0.0625;

Figure 3a).

To further explore possible epigenetic effects of Hp-

TGM, we carried out ChIP-Seq analysis to measure

changes in H3K27-acetylation (ac) on histones, with

higher levels being indicative of more active/accessible

genes.26 Overall, the chromatin modifications detected in

TGF-b- vs. Hp-TGM-induced Tregs were similar,

although we did identify genes with different H3K27ac

patterns (Figure 3b, c). GO-enrichment analysis of genes

with increased H3K27ac in Hp-TGM- compared with

TGF-b-induced Tregs revealed 58 enriched terms, mostly

related to immune functions and modulation of

responses by symbionts (Supplementary figure 2).

Examples of genes with increased H3K27ac marks in Hp-

TGM-induced compared with TGF-b-induced Tregs

included the gut homing marker integrin b7 (ITGB7),

TGFB, and its receptor TGFBR1, suggesting that Hp-

TGM may promote a positive feedback loop of TGF-b
signaling pathways (see GEO series accession number

GSE164548). Although both TGF-b and Hp-TGM

induced similar levels of H3K27ac in CTLA4 and IL2RA

(CD25), FOXP3 had a significantly increased number of

H3K27Ac tags in Hp-TGM- compared with TGF-b-
induced Tregs as determined by Spatial Clustering for

Identification of ChIP-Enriched Regions (SICER) analysis;

the region SICER identified with increased marks is

shown by an orange bar in Figure 3c. The latter finding

is consistent with the higher MFI of FOXP3 induced by

Hp-TGM.

Hp-TGM-induced Tregs are functionally suppressive

Next, we investigated whether Hp-TGM-induced Tregs

acquired suppressive activity. We found that, compared

with TGF-b-induced Tregs, Hp-TGM-induced Tregs were

significantly better at suppressing allogeneic, polyclonally

activated CD4+ and CD8+ T-cell proliferation over a

range of cell ratios (Figure 4a, b). Another defining

feature of FOXP3+ Tregs is their low expression of

effector T-cell cytokines.27 We confirmed that, similar to

TGF-b-induced Tregs, Hp-TGM-induced Tregs had

significantly reduced secretion of IFN-c and IL-2,

compared with control culture cells as detected by

intracellular cytokine staining (Figure 4c) and cytokine

secretion (Figure 4d). Analysis of the cytokines secreted

into culture supernatants also identified both Hp-TGM-

and TGF-b-induced Tregs had significantly reduced

secretion of IL-4, IL-13 and TNF compared with control

cultures (Figure 4d).
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Hp-TGM-induced FOXP3+ Tregs are stable in the

presence of inflammatory cytokines

A concern regarding the use of in vitro-induced Treg cells

for therapy is reversion to an effector T-cell phenotype

in vivo.19 To investigate the stability of Hp-TGM-induced

Tregs, we re-cultured induced Tregs in the absence of

TGF-b or Hp-TGM and, in some cultures, in the

presence of inflammatory cytokines (Figure 5a). Changes

in cell phenotype were compared with populations that

were expanded in the continual presence of TGF-b or

Hp-TGM (baseline condition), which were defined as

having 100% stability and used to calculate the

percentage of stable cells in matched comparison cultures.

The proportion of Hp-TGM-induced Tregs that remained

FOXP3+ after Hp-TGM removal was significantly greater

than for TGF-b-induced Tregs when TGF-b was

removed, with a similar result for CTLA-4 expression
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Figure 3. Hp-TGM induces epigenetic modification of FOXP3. Na€ıve CD4+ T cells were expanded with modified L-cells (as per methods) for 28–32 days

with either TGF-b, orHp-TGM (controls had neither added), then viable CD4+ T cells were isolated from cultures by cell sorting. (a) The average percentage

methylation is shown for eight CpG sites in the TSDR of FOXP3 for control, TGF-b and Hp-TGM-conditioned cells (n = 6, all males). Data from TGF-b and

Hp-TGM cultures were converted to a percentage loss of methylation from control. From some cultures, the cells were collected at day 22 in culture, fixed
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way ANOVA and theMann-WhitneyU-test and in b used theWilcoxon signed rank test. Error bars representmedian� interquartile range.
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Figure 4. Hp-TGM-induced FOXP3+ cells acquire Treg-defining functions. (a) In vitro suppression assays were performed by culturing cell

proliferation dye (CPD) eFluor450-labeled PBMCs (responder cells) with CPDeFluor670-labelled cells from control, TGF-b or Hp-TGM cultures 5–

7 days after second restimulation at the cell ratios indicated. After 4 days of anti-CD3/CD28 stimulation, proliferation of responder cells was

assessed by calculating division index (DI) and calculating the percentage suppression based on responder only wells. (b) The percentage of

suppression of responder cells that were gated as live CD4+ or CD8+ T cells (n = 3). Cells from control, TGF-b or Hp-TGM cultures 5–7 days after
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(Figure 5b). Moreover, when the induced Tregs were re-

cultured without Hp-TGM/TGF-b, but with the

inflammatory cytokines IL-6, TNF and IL-1b, Hp-TGM-

induced Tregs showed significantly greater stability of

FOXP3 and CTLA-4 expression than did TGF-b-induced
Tregs (Figure 5c). Importantly, following exposure to

inflammatory cytokines, TGF-b- but not Hp-TGM-

induced Tregs increased production of IFN-c and IL-2

compared with cultures with continual presence of TGF-

b/Hp-TGM and no inflammatory cytokines (Figure 5d).

Hp-TGM can induce stable FOXP3+ Tregs from

pre-committed memory Th cells

As a potential therapeutic application of Hp-TGM is its

direct administration in vivo, we investigated whether it

may be able to convert pre-committed memory Th

subsets to a regulatory T-cell phenotype. We sorted

ex vivo Th1, Th2 and Th17 cells using the gating strategy

in Supplementary figure 3a and expanded these cells by

stimulating with anti-CD3/CD28 beads in the absence or

presence of TGF-b or Hp-TGM (Figure 6a). Hp-TGM-

induced significantly more Th1 and Th17 cells to express

FOXP3 after 7 days in culture compared with TGF-b
(Figure 6b), although both were similarly unable to

induce FOXP3 expression in Th2 cells (Supplementary

figure 3b). However, in contrast to what was found with

na€ıve CD4+ T-cell cultures, neither TGF-b nor Hp-TGM-

conditioned Th1 or Th17 cells had substantial

upregulation of CD25 or CTLA-4 compared to control

cultures (Supplementary figure 3c). Interestingly, Hp-

TGM, but not TGF-b, resulted in a small, yet significant,

reduction in the percentage of IFN-c+ Th1 cells and the

amount of secreted IFN-c. Nevertheless, neither Hp-TGM
nor TGF-b affected IL-17A expression by Th17 cells

(Figure 6c and Supplementary figure 3d). Both TGF-b
and Hp-TGM-conditioned Th1 and Th17 cells acquired

in vitro suppressive function, with Hp-TGM-conditioned

Th1 cells being slightly more suppressive than their TGF-

b counterparts over a range of cell ratios (P = 0.0065;

Figure 6d). Finally, we assessed the stability of the

induced Tregs from Th1 and Th17 cell cultures.

Intriguingly, we again noted that the Hp-TGM-induced

FOXP3+ cells had enhanced stability compared with TGF-

b-induced FOXP3+ cells in the presence of inflammatory

cytokines in vitro, and this was significant for the Th17

cells (P = 0.0073, Figure 6e).

DISCUSSION

We show here that a novel parasite-derived TGF-b mimic

protein (Hp-TGM) is able to induce FOXP3+ Tregs from

both na€ıve and memory human CD4+ T cells in vitro.

The FOXP3+ Tregs induced from na€ıve CD4+ T cells also

had high expression of the Treg markers CD25 and

CTLA-4, did not secrete effector cytokines and were able

to suppress T-cell proliferation. Most striking was our

finding that, in comparison with TGF-b, Hp-TGM-

induced Tregs had superior stability in vitro in the

presence of inflammatory cytokines. These data suggest

that Hp-TGM not only phenocopies the ability of TGF-b
to induce Tregs but that these Hp-TGM-induced Tregs

may be a more stable cell product with potential

therapeutic benefits.

Hp-TGM was similar to TGF-b in its ability to induce

FOXP3 expression in na€ıve CD4+ T cells; however,

comparable levels of FOXP3 induction required at least 5

times higher molar concentrations of Hp-TGM compared

with TGF-b, the opposite of what was previously shown

for murine T cells.7 The source of Hp-TGM, H. polygyrus,

is a mouse parasite and these data may reflect host–
parasite co-evolution and a specialized adaptation of Hp-

TGM to the mouse immune system. As murine and

human TGF-b receptors share 96% amino acid identity,

the discordant concentration of Hp-TGM required for its

effects on mouse and human T cells is unlikely to be due

to differing affinities for the TGF-b receptors. However,

we have shown that a truncated form of Hp-TGM, which

retains the receptor binding domains but lacks the C-

terminal portion of the protein, also requires higher

concentrations to be effective on mouse cells,16 implying

that there may be an additional, mouse-specific,

interaction that enhances the efficacy of Hp-TGM.

Although the percentages of FOXP3+ cells induced by

the two ligands were similar, Hp-TGM-induced Tregs

expressed higher amounts of FOXP3 protein, as indicated

by MFI. In a parallel study,9 we studied the kinetics of

Hp-TGM signaling in mouse T cells and found it had a

more sustained effect compared with TGF-b. This may be

due to TGF-b being subjected to intricate regulation,

which Hp-TGM may be able to circumvent, resulting in

more prolonged signals and increased amounts of

FOXP3. Importantly, we also showed that, compared to

TGF-b, Hp-TGM could induce significantly more

expression of CTLA-4, a co-inhibitory receptor with an

important functional role in Tregs.28 The in vitro effects

of Hp-TGM could also be achieved with anti-CD3/CD28

bead-based stimulation, with FOXP3+ cell purity further

enhanced by rapamycin, suggesting that Hp-TGM could

be adapted for induction of a human Treg cell therapy

product. Since not all cells were converted to Tregs, more

work is needed to understand the biological differences

between na€ıve CD4+ T cells that are, or are not,

susceptible to the effects of Hp-TGM.
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Figure 6. Hp-TGM can induce FOXP3 expression in ex vivo memory Th1 and Th17 cells. Ex vivo Th cell subsets were isolated by cell sorting as

shown in Supplementary figure 3a and expanded with anti-CD3/CD28 beads (1 bead to 4 cell ratio) alone (control) or with TGF-b or Hp-TGM.

Representative plots and proportion of FOXP3+ cells and FOXP3 MFI are shown after 7 days culture of (a) Th1 cells and (b) Th17 cells (n = 7). (c)

For n = 5, changes in IFN-c and IL-17A production were assessed by flow cytometry by restimulating with PMA and ionomycin in the presence of

brefeldin A (n = 5). (d) At day 28 (13 days after second restimulation) suppression assays were performed and the percentage suppression of

CD8+ responder T cells (within PBMCs) is shown for TGF-b- or Hp-TGM-conditioned Th1 and Th17 cells (n = 4). (e) Changes in FOXP3 expression

when inflammatory cytokines (IL-6, IL-1b and TNF) were added to cultures compared with cultures without cytokine challenge (n = 5), * P ≤ 0.05

and ns, not significant.
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It is remarkable that, despite sharing no sequence

homology with mammalian TGF-b, Hp-TGM is able to

signal through the human TGF-b receptor complex. Of

note, one key difference is that Hp-TGM is able to

directly bind to TbRI, while TGF-b must first form a

complex with TbRII,8 although the functional

consequences of this difference are not yet known. We

and others have shown that H. polygyrus infection

induces host TGF-b production,29,30 which may augment

the effects of Hp-TGM in vivo. However, as Hp-TGM

does not require processing for biological activity and is

not subject to feedback controls that might limit the

effects of TGF-b it is likely to have a more prolonged and

potent effect in vivo.

We confirmed that Hp-TGM is able to drive SMAD2/3

phosphorylation in primary human cells, although it

required either a longer incubation time or a higher

concentration to achieve the same induction of FOXP3 as

did TGF-b. While the mature form of TGF-b consists of a

single domain, Hp-TGM consists of five domains and, in

mice, only the first three domains were required for TGF-

b receptor binding and FOXP3 induction.16 A recent

study of Hp-TGM binding to human receptors identified

that domain 3 competes for the same binding sites as

TGF-b on TBRII, while domains 1 and 2 are required for

optimal binding to TBRI, with the role of domains 4 and

5 in full-length Hp-TGM remaining unclear.31 It is

important for future studies to understand which

domains are required for Hp-TGM signaling in human

cells, to solve the crystal structure of Hp-TGM and TbRI/
II, and determine if Hp-TGM is able to bind other

receptors. These data will provide clues as to how TGF-b
signaling pathways could be targeted therapeutically.

Supporting the finding that Hp-TGM induced higher

FOXP3 MFI was the fact that Hp-TGM induced a greater

loss of methylation in the FOXP3 TSDR compared with

TGF-b-induced Tregs, although neither TGF-b nor Hp-

TGM achieved more than a 50% loss of methylation in

na€ıve CD4+ T cells. While it is accepted that most

thymically derived Tregs have a fully demethylated TSDR,

it is still unclear whether this is the case for peripherally

derived Tregs and evidence to date suggests that Tregs

induced in vitro with TGF-b do not acquire this

signature.20,21 Interestingly, a recent study in mice

reported that TGF-b and IL-2 in vitro-induced Tregs

acquired a demethylated TSDR in the absence of CD28

signaling.32 Future studies should investigate the

epigenetic and functional effects on Tregs induced with

Hp-TGM without CD28 co-stimulation. However, as

recent studies of iTregs generated by TGF-b and all-trans

retinoic acid and rapamycin22; or TGF-b and small

molecule inhibitors23; or lentiviral transfer of FOXP333;

have found that the iTregs had robust and stable

suppressive function without acquiring a methylated

TSDR, this feature may not be essential for suppressive

function of iTregs. Nevertheless, our data showing

increased H3K27ac marks in the FOXP3 locus in Hp-

TGM-induced Tregs suggest that this molecule may drive

epigenetic changes that promote Treg stability34 and

warrant further investigation.

Importantly, Hp-TGM-induced FOXP3+ Tregs acquired

robust in vitro suppressive function, which was

statistically significantly superior to that of TGF-b-
induced Tregs. These cells also adopted the typical Treg

characteristic of minimal production of effector

cytokines, particularly IL-2, which is a key distinguishing

feature from non-Tregs. Therefore, the Hp-TGM-induced

Tregs fit the criteria proposed by Yamaguchi et al. for

bona fide Tregs, being high, constitutive expression of

FOXP3, CD25 and CTLA-4 and no IL-2 expression.28 To

more rigorously assess the stability of the Hp-TGM-

induced Tregs we challenged these cells by removing Hp-

TGM and adding the inflammatory cytokines IL-6, TNF

and IL-1b. In this setting of inflammatory challenge, we

saw a marked difference between Hp-TGM- and TGF-b-
induced Tregs, with the former having significantly

greater stability of FOXP3 and CTLA-4 expression

without secretion of IFN-c or IL-2.

We also showed that Hp-TGM is able to similarly induce

stable and suppressive FOXP3+ cells from memory Th1

and Th17 cells. Interestingly, Hp-TGM-treated Th1 cells

had reduced IFN-c secretion, whereas in parallel assays

Hp-TGM-treated Th17 cells did not have altered IL-17A

expression, indicating that Hp-TGM may be best suited for

modulating the activity of Th1 cells. There is much interest

in therapies that can convert pathogenic effector T cells

into Tregs, and these data suggest that Hp-TGM may be a

suitable candidate for such an in vivo approach.

In conclusion, we extend upon earlier work describing

this novel parasite-derived TGF-b mimic, Hp-TGM,

showing that it is also able to induce populations of

suppressive FOXP3+ Tregs in vivo from both na€ıve and

memory human CD4+ T cells via TbRI and pSMAD2/3

signalling. These cells had superior stability compared to

TGF-b-induced Tregs in an inflammatory milieu. Our

data identify Hp-TGM as a potentially useful therapeutic

molecule for the treatment of inflammatory disease, such

as inflammatory bowel disease.

METHODS

Subjects and samples

Study protocols were approved by Clinical Research Ethics
Boards of the University of British Columbia (H18-02553) and
Canadian Blood Services (REB 2015.028). Peripheral blood
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cells from n = 28 healthy volunteers (n = 11 female, n = 17
male) were used.

Isolation of CD4+ T cells

CD4+ T cells were isolated from buffy coats (~50 mL) by
incubation with 750 lL RosetteSep human CD4+ T-cell
enrichment cocktail (STEMCELL Technologies Inc.,
Vancouver, BC, Canada) for 20 min followed by centrifugation
over Ficoll-Paque (STEMCELL Technologies Inc.). Na€ıve CD4+

T cells were then isolated by cell sorting. The cells were stained
for 20 min with fixable viability dye eFluor780 (eBioscience,
San Diego, CA, USA), CD4 (RPA-T4)-AF700, CD25 (M-
A251)-PECy7, CD45RO(UCHL1)-PE, CD127 (HIL-7R-M21)-
APC and CD45RA (HI100)-FITC (BD Biosciences, Franklin
Lakes, NJ, USA). Na€ıve cells were sorted as live
CD4+CD25negCD45RA+CD45ROneg cells, if required Tregs
were sorted as controls as live CD4+CD25++CD127low

(Supplementary figure 1a). For some experiments, na€ıve CD4+

T cells were isolated using an EasySep human na€ıve CD4+ T-
cell isolation kit according to manufacturers’ instructions
(STEMCELL Technologies Inc.). Memory Th subsets were
isolated by staining for 20 min with fixable viability dye
eFluor780, CD4 (RPA-T4)-FITC, CD127 (HIL-7R-M21)-PE,
CD25-PECy7 (BD Biosciences), CD45RA (2H4LDH11LDB9)-
ECD (Beckman Coulter, Brea, CA, USA), CXCR3 (G025H7) -
BV421, CCR6 (G034E3)-APC, CCR4 (L291H4)-BV605
(BioLegend, San Diego, CA, USA). Th1 cells were isolated as
viable CD4+CXCR3+CCR4negCCR6neg, Th2 cells as viable
CD4+CXCR3negCCR4+CCR6neg and Th17 as viable
CD4+CXCR3negCCR4+CCR6+ (Supplementary figure 3a).

Reagents

Recombinant full length Hp-TGM was produced as described
previously8 and used at 100 ng mL�1 unless otherwise stated.
Recombinant mammalian TGF-b1 (R&D Systems Inc.
Minneapolis, MN, USA; catalogue number 240-B) was used at
1 ng mL�1 unless otherwise stated. Recombinant human IL-2
(Proleukin; Prometheus Laboratories, San Diego, CA, USA)
was added to Treg-induction cultures at 100 U mL�1, and in
cultures of ex vivo Tregs at 1000 U mL�1. The TbRI (ALK5)
inhibitor SB-431542, which also inhibits ALK4 and ALK7, was
used at 5 lM (Tocris Bioscience, Bristol, UK).

In vitro induction of FOXP3+ Tregs

Sorted cells were expanded with anti-CD3/CD28 Dynabeads at
specified ratios (Invitrogen, Carlsbad, CA, USA) or irradiated,
modified L-cells at a 1:1 ratio. The modified L cells used were
a mouse fibroblast line virally transfected with the human
adhesion molecule CD58 (to bind CD2 on target cells and to
stabilize the cell–cell interaction), Fc receptor CD32 (to bind
the Fc receptor of the CD3 monoclonal antibody in culture to
provide T-cell receptor stimulation), and the costimulatory
ligand CD80.35 L-cells were irradiated 50 Gy and 20 000 cells
were plated in flat-bottom 96-well plates and 20 000 sorted

CD4+ T cells added. Cytokines were added at specified
concentrations and the cells incubated at 37°C (5% CO2). T
cells were restimulated every 14 days. The culture media for
all experiments was X-VIVO 15 (Lonza, Basel, Switzerland)
supplemented with 5% heat-inactivated human serum
(NorthBio Inc, Toronto, ON, Canada), 1% Glutamax and 1%
Penicillin-Streptomycin (Invitrogen). Cell proliferation was
measured by staining with 5 lM cell proliferation dye eF450
(Invitrogen). The inflammatory cytokine challenge was the
addition of 10 ng mL�1 each of recombinant IL-1b, IL-6
(STEMCELL Technologies Inc., #78034; #78148) and TNF
(eBioscience, #14-8329-63). In some experiments,
100 ng mL�1 rapamycin was added (Sigma-Aldrich, St Louis,
CA, USA).

Phenotype analysis by flow cytometry

Cells were stained with 1:1000 dilution of cell viability dye
eFluor780 (eBioscience) then fixed and permeabilized with a
FOXP3 buffer kit according to the manufacturer’s instructions
(BD). The cells were then stained with a mAb cocktail for
15 min before being washed and data acquired on a 4-laser
Fortessa X20 cytometer (BD). Antibodies used in this study
were anti-CD3(UCHT1)-V500, CD4(RPA-T4)-AF700, IFN-c
(B27)-FITC, CD127(HIL-7R-M21)-PE or APC, CD25(M-
A251)-PECy7 or BV711 (BD Biosciences), CD45RA(HI100)-
ECD (Beckman Coulter), CD45RΑ(2H4LDH11LDB9)-FITC
(eBioscience), CD8(OKT8)-PerCPeF710, FOXP3(236A/E7)-PE
or FITC (eBioscience), CTLA-4(BNI3)-BV786, CXCR3
(G025H7)-BV421, CCR4(L291H4)-BV605, CCR6(G034E3)-
APC, CD45RO(UCHL1)-PE and IL-17A(BL168)-BV711
(BioLegend). For analysis of phosphorylated SMAD2/3,
PBMCs were washed twice in serum-free media, Iscove’s
Modified Dulbecco’s Medium (IMDM, Gibco, Thermo Fisher
Scientific Inc, Waltham, MA, USA) supplemented with 1%
fetal calf serum (NorthBio Inc). The cells were incubated in
this media and either left unstimulated or 5 ng mL�1 TGF-b
or 100–500 ng mL�1 Hp-TGM were added for 15 or 30 min
at 37�C and all cells were mixed by pipetting (1 9 105 cells in
500 lL). An equal volume of pre-warmed (to 37�C) Cytofix
(BD) was added to the cells and incubated at 37�C for 10 min
before adding 100 lL of ice-cold phosphate buffered saline
(Thermo Fisher Scientific Inc) and then stained with
pSMAD2/3(O72-670)-AF647 (BD).

Suppression assays

Suppression assays were performed as described previously36

using heterologous PBMCs as responder cells and measuring
the suppression of anti-CD3/CD28 bead stimulated cell
proliferation.

Cytokine analysis

Cell supernatants were collected following 5 h stimulation
with 10 ng mL�1 phorbol 12-myristate 13-acetate (PMA) and
500 ng mL�1 ionomycin in the presence of 10 lg mL�1
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Brefeldin A (Sigma-Aldrich). The concentrations of secreted
cytokines in the cell supernatants were measured using the
LEGENDplexTM 13-plex Th cytokine bead array kit according
to manufacturer’s directions (BioLegend). CBA data were
acquired on a 3-laser Cytoflex cytometer (Beckman Coulter)
and analyzed using FCAP array v3 software (BD).

Treg-specific demethylation region

Methylation levels within the Treg-Specific Demethylation
Region (TDSR) of FOXP3 was assessed by pyrosequencing as
described previously.37

ChIP-Seq

Na€ıve CD4+ T cells were expanded with modified L-cells (as
described above) for 22 days with either TGF-b, or Hp-TGM
(controls had neither added), then viable CD4+ T cells were
isolated from cultures by cell sorting for ChIP-seq analysis.
The cells were fixed with 1% paraformaldehyde (ThermoFisher
Scientific Inc), incubated for 10 min, then a 1/10 volume of
1.5 M glycine (Sigma-Aldrich) was added for 5 min while
rotating. The cells were centrifuged then washed twice with 1
mL ice cold PBS and the cell pellets flash frozen in LN2 and
stored at �80°C. ChIP-Seq was performed as previously,38

anti-H3K27Ac polyclonal antibody ab4729 was from Abcam
(Cambridge, UK). The obtained sequences were mapped to
hg19 using Bowtie 2 (v2.1.1).39 Uniquely mapped reads were
selected and then duplicated reads were discarded. Peak calls
were performed using SICER (v1.1.1)40 with the threshold of
FDR less than 0.000000001. For further analyses and
visualization, ChIPPeakAnno (v3.5)41 and Integrative Genome
Viewer (v2.3.91)42 were used. These data have been deposited
in NCBI’s Gene Expression Omnibus43 and are accessible
through GEO Series accession number GSE164548. (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi).

Statistics

Statistical analyses between two groups used the Mann-
Whitney U-test or, for paired samples, the Wilcoxon signed
rank test. Analysis of ≥ 3 groups used Kruskal-Wallis one-way
ANOVA or, for paired samples, a Friedman one-way ANOVA
with Dunn’s multiple comparison post-test. Correlation
analyses were calculated with Spearman’s rho (r). P-values
were considered significant when < 0.05. Prism v8 (GraphPad
Software Inc., San Diego, CA, USA) was used for all statistical
analyses. Error bars represent median � interquartile range;
*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ***P ≤ 0.0001 and ns =
not significant.
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