1,591 research outputs found

    Particular Solutions in Bimetric Theory and Their Implications

    Full text link
    Ghost-free bimetric theory can describe gravity in the presence of an extra spin-2 field. We study certain aspects of dynamics in this theory: (1) It is shown that if either of the metrics is an Einstein solution then the other is always forced to be Einstein, too. For a class of bimetric models this constraint is stronger and as soon as one metric is Einstein, the other metric is forced to be proportional to it. As a consequence, the models in this class avoid a branch of pathological solutions that exhibit determinant singularities or nonlinear ghosts. These constraints persists in a generalized form when sources are included, but are destroyed in the massive gravity limit of the theory. (2) For another class of bimetric models, we show the existence of solutions that do not admit a massive gravity limit. A bimetric model that could exhibit a nonlinear version of "partially massless" symmetry belongs to both these classes. It is argued that if such a model exits, its symmetry will not survive in the massive gravity limit.Comment: Latex, 18 pages. Published versio

    Extended Weyl Invariance in a Bimetric Model and Partial Masslessness

    Full text link
    We revisit a particular ghost-free bimetric model which is related to both partial masslessness (PM) and conformal gravity. Linearly, the model propagates six instead of seven degrees of freedom not only around de Sitter but also around flat spacetime. Nonlinearly, the equations of motion can be recast in the form of expansions in powers of curvatures, and exhibit a remarkable amount of structure. In this form, the equations are shown to be invariant under scalar gauge transformations, at least up to six orders in derivatives, the lowest order term being a Weyl scaling of the metrics. The terms at two-derivative order reproduce the usual PM gauge transformations on de Sitter backgrounds. At the four-derivative order, a potential obstruction that could destroy the symmetry is shown to vanish. This in turn guarantees the gauge invariance to at least six-orders in derivatives. This is equivalent to adding up to 10-derivative corrections to conformal gravity. More generally, we outline a procedure for constructing the gauge transformations order by order as an expansion in derivatives and comment on the validity and limitations of the procedure. We also discuss recent arguments against the existence of a PM gauge symmetry in bimetric theory and show that, at least in their present form, they are evaded by the model considered here. Finally, we argue that a bimetric approach to PM theory is more promising than one based on the existence of a fundamental PM field.Comment: Latex, 35 pages. Matches published versio

    Proof of Consistency of Nonlinear Massive Gravity in the Stuckelberg Formulation

    Full text link
    We address some recent concerns about the absence of the Boulware-Deser ghost in the Stuckelberg formulation of nonlinear massive gravity. First we provide general arguments for why any ghost analysis in the Stuckelberg formulation has to agree with existing consistency proofs that have been carried out without using Stuckelberg fields. We then demonstrate the absence of the ghost at the completely nonlinear level in the Stuckelberg formulation of the minimal massive gravity action. The constraint that removes the ghost field and the associated secondary constraint that eliminates its conjugate momentum are computed explicitly, confirming the consistency of the theory in the Stuckelberg formulation.Comment: v1: Latex, 11 pages, v2: a comment adde

    Bimetric gravity is cosmologically viable

    Get PDF
    Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, MfM_f, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to Λ\LambdaCDM, but with a technically-natural value for the cosmological constant. We find MfM_f should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.Comment: 8+2 pages, 2 tables. Version published in PLB. Minor typo corrections from v

    On Partially Massless Bimetric Gravity

    Full text link
    We extend the notion of the Higuchi bound and partial masslessness to ghost-free nonlinear bimetric theories. This can be achieved in a simple way by first considering linear massive spin-2 perturbations around maximally symmetric background solutions, for which the linear gauge symmetry at the Higuchi bound is easily identified. Then, requiring consistency between an appropriate subset of these transformations and the dynamical nature of the backgrounds, fixes all but one parameter in the bimetric interaction potential. This specifies the theory up to the value of the Fierz-Pauli mass and leads to the unique candidate for nonlinear partially massless bimetric theory.Comment: Latex, 11 pages; references added, discussion extended; matches published versio
    corecore