904 research outputs found

    Simulated hurricane-induced changes in light and nutrient regimes change seedling performance in Everglades forest-dominant species

    Get PDF
    Wind damage from cyclones can devastate the forest canopy, altering environmental conditions in the understory that affect seedling growth and plant community regeneration. To investigate the impact of hurricane-induced increases in light and soil nutrients as a result of canopy defoliation, we conducted a two-way factorial light and nutrient manipulation in a shadehouse experiment. We measured seedling growth of the dominant canopy species in the four Everglades forest communities: pine rocklands (Pinus elliottii var densa), cypress domes (Taxodium distichum), hardwood hammocks, and tree islands (Quercus virginiana and Bursera simaruba). Light levels were full sun and 50% shade, and nutrient levels coupled with an additional set of individuals that were subjected to a treatment mimicking the sudden effects of canopy opening from hurricane-induced defoliation and the corresponding nutrient pulse. Seedlings were measured weekly for height growth and photosynthesis, with seedlings being harvested after 16 weeks for biomass, leaf area, and leaf tissue N and 13C isotope ratio. Growth rates and biomass accumulation responded more to differences in soil nutrients than differences in light availability, with largest individuals being in the high nutrient treatments. For B. simaruba and P. elliottii, the highest photosynthetic rates occurred in the high light, high nutrient treatment, while T. distichum and Q. virginiana photosynthetic rates were highest in low light, high nutrient treatment. Tissue biomass allocation patterns remained similar across treatments, except for Q. virginiana, which altered above- and belowground biomass allocation to increase capture of limiting soil and light resources. In response to the hurricane simulation treatment, height growth increased rapidly for Q. virginiana and B. simaruba, with nonsignificant increases for the other two species. We show here that ultimately, hurricane-adapted, tropical species may be more likely to recolonize the forest canopy following a large-scale hurricane disturbance

    Responses of Four Non-tidal Forest Communities of the Florida Everglades to Hurricane Impact over 21 Years

    Get PDF
    The regular occurrence of hurricane-associated winds has been an important factor in shaping the structure and composition of the forest ecosystems of the Florida Everglades. Forest communities in the Everglades are adapted to hurricane disturbances, but increased frequency and/or intensity of hurricanes may lead to decline or even collapse of these communities. The overall objective of this project is to understand the patterns, pace, and mechanisms of the recovery process to Hurricane Andrew damage in four Everglade forest communities: pinelands, hardwood hammocks, bayhead tree islands, and cypress domes. This study combines long- and short-term field measurements and experimental garden studies to determine how the four woody plant community types recover from hurricane impacts. Most of the community types were adversely affected by storm damage in the short-term (3 years post-hurricane) through altered growth rates and canopy defoliation, however these effects were relatively short lived and were not visible in shifts in species composition after the long-term (20 year) recovery period. Only in the most diverse communities over the long-term there was a delayed mortality in damaged individuals that drove a diversity loss. This loss was not present over the short-term recovery time period. Using individual damage extent and short-term recovery growth rates, I developed a simplified model that accurately predicted surviving individual stem size over long-term recovery periods of Taxodium distichum within cypress domes and select hardwood hammock species. The shadehouse experiments demonstrated the importance of nutrient availability to growth of seedlings of canopy dominants. Recruits of these species responded to changing environmental conditions associated with storm impact through a variety of strategies in accordance with their adaptive traits. Synergistically, the combined parts of this dissertation demonstrate directional community and species-specific shifts that vary over time scales. Storm impacts have the potential to alter community composition and diversity within impacted systems, and in particular the Everglades ecosystem

    Short term changes in moisture content drive strong changes in Normalized Difference Vegetation Index and gross primary productivity in four Arctic moss communities

    Get PDF
    Climate change is currently altering temperature and precipitation totals and timing in Arctic regions. Moss communities constitute much of the understory in Arctic vegetation, and as poikilohydric plants moss are highly sensitive to timing and duration of moisture levels. Here we investigate the role of moisture content on NDVI, red and near-infrared reflectance, and gross primary productivity (GPP) of two sphagnum and two pleurocarpus moss community types during two separate drying experiments. For both experiments, blocks of moss were collected near Imnavait Creek, Alaska, saturated to full water capacity, and then allowed to air dry before being re-saturated. Drying of blocks was conducted in a translucent outdoor tent during the first experiment and under indoor climate-controlled conditions during the second. Community NDVI (experiment 1 and 2), and GPP (experiment 2) were measured at regular intervals during the dry-down and after rewetting. In both experiments, moss NDVI sharply declined between 80% and 70% moisture content for sphagnum moss communities (NDVI change = −0.17 to −0.2), but less so for pleurocarpus moss communities (NDVI change = −0.06 to −0.12). Changes in NDVI were largely the result of increases in reflectance in red wavelengths. Peak GPP for all community types in the second experiment (1.31 to 2.08 μmol m−2 s−1) occurred at 80% moisture content and declined significantly as moisture content decreased. Rates of GPP continued to decline below 80% moisture content until near zero as moss reached a steady weight (air dry) over a period of 84 h, while NDVI values declined slowly between 70% hydration and fully air dry. Re-saturation caused NDVI to increase in both sphagnum (NDVI change = +0.18 to +0.23) and pleurocarpus (NDVI change = +0.10 to +0.17) communities. Only sphagnum communities showed GPP resuming (0.824 μmol m−2 s−1) after 24 h. The strong changes in NDVI and mismatch of moss NDVI values and GPP with moisture content fluctuations indicate that using NDVI as a proxy for productivity in Arctic vegetation communities may be problematic and underscores the need for quantification of moss community coverage, composition, and moisture content

    Warming experiments elucidate the drivers of observed directional changes in tundra vegetation

    Get PDF
    Few studies have clearly linked long-term monitoring with insitu experiments to clarify potential drivers of observed change at a given site. This is especially necessary when findings from a site are applied to a much broader geographic area. Here, we document vegetation change at Barrow and Atqasuk, Alaska, occurring naturally and due to experimental warming over nearly two decades. An examination of plant cover, canopy height, and community indices showed more significant differences between years than due to experimental warming. However, changes with warming were more consistent than changes between years and were cumulative in many cases. Most cases of directional change observed in the control plots over time corresponded with a directional change in response to experimental warming. These included increases in canopy height and decreases in lichen cover. Experimental warming resulted in additional increases in evergreen shrub cover and decreases in diversity and bryophyte cover. This study suggests that the directional changes occurring at the sites are primarily due to warming and indicates that further changes are likely in the next two decades if the regional warming trend continues. These findings provide an example of the utility of coupling insitu experiments with long-term monitoring to accurately document vegetation change in response to global change and to identify the underlying mechanisms driving observed changes

    Discovery and characterization of small molecules that target the Ral GTPase

    Get PDF
    The Ras-like GTPases RalA and B are important drivers of tumor growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here, we used protein structure analysis and virtual screening to identify drug-like molecules that bind a site on the GDP-form of Ral. Compounds RBC6, RBC8 and RBC10 inhibited Ral binding to its effector RalBP1, Ral-mediated cell spreading in murine fibroblasts and anchorage-independent growth of human cancer cell lines. Binding of RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasma resonance and 15N-HSQC NMR. RBC8 and BQU57 show selectivity for Ral relative to Ras or Rho and inhibit xenograft tumor growth similar to depletion of Ral by siRNA. Our results show the utility of structure-based discovery for development of therapeutics for Ral-dependent cancers

    Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure

    Get PDF
    Controlling severe outbreaks remains the most important problem in infectious disease area. With time, this problem will only become more severe as population density in urban centers grows. Social interactions play a very important role in determining how infectious diseases spread, and organization of people along social lines gives rise to non-spatial networks in which the infections spread. Infection networks are different for diseases with different transmission modes, but are likely to be identical or highly similar for diseases that spread the same way. Hence, infection networks estimated from common infections can be useful to contain epidemics of a more severe disease with the same transmission mode. Here we present a proof-of-concept study demonstrating the effectiveness of epidemic mitigation based on such estimated infection networks. We first generate artificial social networks of different sizes and average degrees, but with roughly the same clustering characteristic. We then start SIR epidemics on these networks, censor the simulated incidences, and use them to reconstruct the infection network. We then efficiently fragment the estimated network by removing the smallest number of nodes identified by a graph partitioning algorithm. Finally, we demonstrate the effectiveness of this targeted strategy, by comparing it against traditional untargeted strategies, in slowing down and reducing the size of advancing epidemics

    Dynamical System Modeling of Immune Reconstitution after Allogeneic Stem Cell Transplantation Identifies Patients at Risk for Adverse Outcomes

    Get PDF
    AbstractSystems that evolve over time and follow mathematical laws as they evolve are called dynamical systems. Lymphocyte recovery and clinical outcomes in 41 allograft recipients conditioned using antithymocyte globulin (ATG) and 4.5-Gy total body irradiation were studied to determine if immune reconstitution could be described as a dynamical system. Survival, relapse, and graft-versus-host disease (GVHD) were not significantly different in 2 cohorts of patients receiving different doses of ATG. However, donor-derived CD3+ cell reconstitution was superior in the lower ATG dose cohort, and there were fewer instances of donor lymphocyte infusion (DLI). Lymphoid recovery was plotted in each individual over time and demonstrated 1 of 3 sigmoid growth patterns: Pattern A (n = 15) had rapid growth with high lymphocyte counts, pattern B (n = 14) had slower growth with intermediate recovery, and pattern C (n = 10) had poor lymphocyte reconstitution. There was a significant association between lymphocyte recovery patterns and both the rate of change of donor-derived CD3+ at day 30 after stem cell transplantation (SCT) and clinical outcomes. GVHD was observed more frequently with pattern A, relapse and DLI more so with pattern C, with a consequent survival advantage in patients with patterns A and B. We conclude that evaluating immune reconstitution after SCT as a dynamical system may differentiate patients at risk of adverse outcomes and allow early intervention to modulate that risk
    corecore