198 research outputs found

    Air Traffic Simulation Technology for High-Population Metroplexes

    Get PDF
    IAI's MetroSim optimizes air traffic by simulating departures, arrivals, and activity in air and onthe ground in busy metroplexes, where flights impact each other at a single airport and among traffic at nearby airports. MetroSim evolved out of several NASA SBIR/STTR Awards and has since been used by NASA for flight simulation analysis. MetroSim has also been integrated with FAA and DOT technology, has produced studies for the Port Authority of New York and New Jersey, and is under development to support the Nav

    The Peculiar Debris Disk of HD 111520 as Resolved by the Gemini Planet Imager

    Full text link
    Using the Gemini Planet Imager (GPI), we have resolved the circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU in both total and polarized HH-band intensity. The disk is seen edge-on at a position angle of ~165∘^{\circ} along the spine of emission. A slight inclination or asymmetric warping are covariant and alters the interpretation of the observed disk emission. We employ 3 point spread function (PSF) subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme examples of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ~40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10 to 40% from 0.5" to 0.8" from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.Comment: 9 pages, 8 Figures, 1 table, Accepted to Ap

    Dynamical Mass Measurement of the Young Spectroscopic Binary V343 Normae AaAb Resolved With the Gemini Planet Imager

    Full text link
    We present new spatially resolved astrometry and photometry from the Gemini Planet Imager of the inner binary of the young multiple star system V343 Normae, which is a member of the beta Pictoris moving group. V343 Normae comprises a K0 and mid-M star in a ~4.5 year orbit (AaAb) and a wide 10" M5 companion (B). By combining these data with archival astrometry and radial velocities we fit the orbit and measure individual masses for both components of M_Aa = 1.10 +/- 0.10 M_sun and M_Ab = 0.290 +/- 0.018 M_sun. Comparing to theoretical isochrones, we find good agreement for the measured masses and JHK band magnitudes of the two components consistent with the age of the beta Pic moving group. We derive a model-dependent age for the beta Pic moving group of 26 +/- 3 Myr by combining our results for V343 Normae with literature measurements for GJ 3305, which is another group member with resolved binary components and dynamical masses.Comment: 12 pages, 7 figures. Accepted to A

    Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Full text link
    We present a new matched filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar Point Spread Function (PSF) is first subtracted using a Karhunen-Lo\'eve Image Processing (KLIP) algorithm with Angular and Spectral Differential Imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the Signal-to-Noise Ratio (SNR) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal SNR loss. We also developed a complete pipeline for the automated detection of point source candidates, the calculation of Receiver Operating Characteristics (ROC), false positives based contrast curves, and completeness contours. We process in a uniform manner more than 330 datasets from the Gemini Planet Imager Exoplanet Survey (GPIES) and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false positive rate. We show that the new forward model matched filter allows the detection of 50%50\% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false positive rate.Comment: ApJ accepte

    Foraging Behavior and Success of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich Species, the Northern Elephant Seal

    Get PDF
    The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean

    GPI spectra of HR 8799 c, d, and e from 1.5 to 2.4μ\mum with KLIP Forward Modeling

    Full text link
    We explore KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR 8799, using PyKLIP and show algorithm stability with varying KLIP parameters. We report new and re-reduced spectrophotometry of HR 8799 c, d, and e in H & K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting simulated sources and recovering them over a range of parameters. The K1/K2 spectra for HR 8799 c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR 8799 e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We show that HR 8799 c and d show significant differences in their H & K spectra, but do not find any conclusive differences between d and e or c and e, likely due to large error bars in the recovered spectrum of e. Compared to M, L, and T-type field brown dwarfs, all three planets are most consistent with mid and late L spectral types. All objects are consistent with low gravity but a lack of standard spectra for low gravity limit the ability to fit the best spectral type. We discuss how dedicated modeling efforts can better fit HR 8799 planets' near-IR flux and discuss how differences between the properties of these planets can be further explored.Comment: Accepted to AJ, 25 pages, 16 Figure

    Performance of the Gemini Planet Imager Non-Redundant Mask and spectroscopy of two close-separation binaries HR 2690 and HD 142527

    Full text link
    The Gemini Planet Imager (GPI) contains a 10-hole non-redundant mask (NRM), enabling interferometric resolution in complement to its coronagraphic capabilities. The NRM operates both in spectroscopic (integral field spectrograph, henceforth IFS) and polarimetric configurations. NRM observations were taken between 2013 and 2016 to characterize its performance. Most observations were taken in spectroscopic mode with the goal of obtaining precise astrometry and spectroscopy of faint companions to bright stars. We find a clear correlation between residual wavefront error measured by the AO system and the contrast sensitivity by comparing phase errors in observations of the same source, taken on different dates. We find a typical 5-σ\sigma contrast sensitivity of 2−3 × 10−32-3~\times~10^{-3} at ∼λ/D\sim\lambda/D. We explore the accuracy of spectral extraction of secondary components of binary systems by recovering the signal from a simulated source injected into several datasets. We outline data reduction procedures unique to GPI's IFS and describe a newly public data pipeline used for the presented analyses. We demonstrate recovery of astrometry and spectroscopy of two known companions to HR 2690 and HD 142527. NRM+polarimetry observations achieve differential visibility precision of σ∼0.4%\sigma\sim0.4\% in the best case. We discuss its limitations on Gemini-S/GPI for resolving inner regions of protoplanetary disks and prospects for future upgrades. We summarize lessons learned in observing with NRM in spectroscopic and polarimetric modes.Comment: Accepted to AJ, 22 pages, 14 figure
    • …
    corecore