171 research outputs found

    Potential contribution of soil diversity and abundance metrics to identifying high nature value farmland (HNV)

    Get PDF
    Identifying and halting the decline of High Nature Value farmland (HNV) is seen as essential to the EU meeting its 2020 biodiversity targets. Data on HNV farmland is used to target policy instruments and monitor changes in HNV to assess policy impact and development. Initial estimates of HNV land were based on land cover data with limited spatial resolution. The EU has since taken a distributed approach, allowing countries to develop their own data and metrics to report on the presence of HNV land, and changes to it. Land cover type has been the main data used for reporting but no consistent set of data metrics have been agreed. Therefore, there is interest in both developing standardised reporting metrics and identifying land with high restoration potential to increase the area of HNV land. We explore the relationship between soil associations and broad habitats across a member state (Wales) to determine if any discernible patterns exist between soil and habitat diversity and if soils information might be useful for identifying areas with high restoration potential. We developed a set of criteria to identify soil abundance, combining soil diversity with ecological rare species approaches. The rare (< 1000 ha) and occasional (1000–10,000 ha) soils identified were associated with significantly higher levels of habitat diversity than the national average. We propose that soil diversity information could supplement habitat information in identifying areas of potential restoration interest. Two iconic areas of Wales, the Llŷn Peninsula and Conwy Valley, were compared for restoration potential. Soil diversity in both areas is higher than the national average; habitat diversity was average, or lower in the case of the Llŷn Peninsula. These areas with higher soil diversity offer greater potential for restoration to type-2 HNV. Soil diversity and habitat diversity were found to be positively correlated at a national level despite major management modification of habitats. Given this relationship it is proposed that soil diversity information offers useful metrics alongside land cover data for identifying or comparing areas with regard to potential restoration for HNV

    Glastir Monitoring & Evaluation Programme. Second year annual report

    Get PDF
    What is the purpose of Glastir Monitoring and Evaluation Programme? Glastir is the main scheme by which the Welsh Government pays for environmental goods and services whilst the Glastir Monitoring and Evaluation Programme (GMEP) evaluates the scheme’s success. Commissioning of the monitoring programme in parallel with the launch of the Glastir scheme provides fast feedback and means payments can be modified to increase effectiveness. The Glastir scheme is jointly funded by the Welsh Government (through the Rural Development Plan) and the EU. GMEP will also support a wide range of other national and international reporting requirements. What is the GMEP approach? GMEP collects evidence for the 6 intended outcomes from the Glastir scheme which are focussed on climate change, water and soil quality, biodiversity, landscape, access and historic environment, woodland creation and management. Activities include; a national rolling monitoring programme of 1km squares; new analysis of long term data from other schemes combining with GMEP data where possible; modelling to estimate future outcomes so that adjustments can be made to maximise impact of payments; surveys to assess wider socio-economic benefits; and development of novel technologies to increase detection and efficiency of future assessments. How has GMEP progressed in this 2nd year? 90 GMEP squares were surveyed in Year 2 to add to the 60 completed in Year 1 resulting in 50% of the 300 GMEP survey squares now being completed. Squares will be revisited on a 4 year cycle providing evidence of change in response to Glastir and other pressures such as changing economics of the farm business, climate change and air pollution. This first survey cycle collects the baseline against which future changes will be assessed. This is important as GMEP work this year has demonstrated land coming into the scheme is different in some respects to land outside the scheme. Therefore, future analysis to detect impact of Glastir will be made both against the national backdrop from land outside the scheme and this baseline data from land in scheme. A wide range of analyses of longterm data has been completed for all Glastir Outcomes with the exception of landscape quality and historic features condition for which limited data is available. This has involved combining data with 2013/14 GMEP data when methods allow. Overall analysis of long term data indicates one of stability but with little evidence of improvement with the exception of headwater quality, greenhouse gas emissions and woodland area for which there has been improvement over the last 20 years. Some headline statistics include: 51% of historic features in excellent or sound condition; two thirds of public rights of way fully open and accessible; improvement in hedgerow management with 85% surveyed cut in the last 3 years but < 1% recently planted; 91% of streams had some level of modification but 60% retained good ecological quality; no change topsoil carbon content over last 25 years. What is innovative? GMEP has developed various new metrics to allow for more streamlined reporting in the future. For example a new Priority Bird species Index for Wales which combines data from 35 species indicates at least half have stable or increasing populations. The new GMEP Visual Quality Landscape Index has been tested involving over 2600 respondents. Results have demonstrated its value as an objective and repeatable method for quantifying change in visual landscape quality. A new unified peat map for Wales has been developed which has been passed to Glastir Contract Managers to improve targeting of payments when negotiating Glastir contracts. An estimate of peat soil contribution to current greenhouse gas emissions due to human modification has been calculated. Models have allowed quantification of land area helping to mitigate rainfall runoff. We are using new molecular tools to explore the effects of Glastir on soil organisms and satellite technologies to quantify e.g. small woody features and landcover change. Finally we are using a community approach to develop a consensus on how to define and report change in High Nature Value Farmland which will be reported in the Year 3 GMEP report

    Carboniferous and Permian Rugosochonetidae (Brachiopoda) from West Spitsbergen

    Full text link
    The rugosochonetid brachiopod species Lissochonetes geinitzianus from the Kazimovian of the Nordenskioldbreen Formation, and Dyoros (Dyoros) mucronata sp. nov., Dyoros (Dyoros) spitzbergianus and Lissochonetes superba from the Artinskian to latest Permian Kapp Starostin Formation in West Spitsbergen are described and figured. Dyoros is generally restricted to the Boreal Realm, whereas Lissochonetes is mostly distributed in the Boreal Realm, but occasionally present in the Palaeoequatorial and Gondwanan Realms<br /

    Physiological and biochemical adaptations to training in Rana pipiens

    Full text link
    Fifteen Rana pipiens were trained on a treadmill thrice weekly for 6.5 weeks to assess the effects of training on an animal that supports activity primarily through anaerobiosis. Endurance for activity increased 35% in these frogs as a result of training ( P =0.006, Fig. 1). This increased performance was not due to enhanced anaerobiosis. Total lactate produced during exercise did not differ significantly for the trained or untrained animals in either gastrocnemius muscle (2.77±0.21 and 2.82±0.13 mg/g, respectively) or whole body (1.32±0.10 and 1.47±0.06 mg/g, respectively). Glycogen depletion also did not differ between the two groups (Fig. 2c). The primary response to training appeared to involve augmentation of aerobic metabolism, a response similar to that reported for mammals. Gastrocnemius muscles of trained frogs underwent a 38% increase over those of untrained individuals in the maximum activity of citrate synthase (14.5±1.0 and 10.5±0.9 μmoles/(g wet wt·min); P =0.008). This enzyme was also positively correlated with the level of maximum performance for all animals tested ( r =0.61, P <0.01) and with the degree of improvement in the trained animals ( r =0.72, P <0.05). In addition to an increased aerobic capacity, the trained animals demonstrated a greater removal of lactate from the muscle 15 min after fatigue (Fig. 2b).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47124/1/360_2004_Article_BF00710002.pd

    Experimental progress in positronium laser physics

    Get PDF

    Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

    Get PDF
    The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron’s evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis

    Storage losses in net-wrapped, large, round bales of alfalfa hay

    Get PDF
    Net- and twine-wrapped alfalfa hay bales were stored from July, 1990 to April, 1991 in three Kansas counties (Reno, Saline, and Stafford). Dry matter losses and changes in acid detergent fiber and acid detergent insoluble nitrogen levels during storage were not significantly different between net- and twine-wrapped bales. Although a significant difference in dry matter recovery between inside and outside bale storage occurred in Saline County, it was not considered important because all recoveries were high. No significant differences in ADF or ADIN increases were found between initial core samples and samples from the outer 4 in. of the bales at the end of storage. The minimal deterioration and weathering were probably due to below average rainfall (less than 14 in.) during the 9- mon. storage period. Net wrapping is probably not justified on the basis of reducing storage losses in low rainfall areas
    corecore