1,335 research outputs found

    Bayesian mass and age estimates for transiting exoplanet host stars

    Full text link
    The mean density of a star transited by a planet, brown dwarf or low mass star can be accurately measured from its light curve. This measurement can be combined with other observations to estimate its mass and age by comparison with stellar models. Our aim is to calculate the posterior probability distributions for the mass and age of a star given its density, effective temperature, metallicity and luminosity. We computed a large grid of stellar models that densely sample the appropriate mass and metallicity range. The posterior probability distributions are calculated using a Markov-chain Monte-Carlo method. The method has been validated by comparison to the results of other stellar models and by applying the method to stars in eclipsing binary systems with accurately measured masses and radii. We have explored the sensitivity of our results to the assumed values of the mixing-length parameter, αMLT\alpha_{\rm MLT}, and initial helium mass fraction, Y. For a star with a mass of 0.9 solar masses and an age of 4 Gyr our method recovers the mass of the star with a precision of 2% and the age to within 25% based on the density, effective temperature and metallicity predicted by a range of different stellar models. The masses of stars in eclipsing binaries are recovered to within the calculated uncertainties (typically 5%) in about 90% of cases. There is a tendency for the masses to be underestimated by about 0.1 solar masses for some stars with rotation periods Prot<7_{\rm rot}< 7d. Our method makes it straightforward to determine accurately the joint posterior probability distribution for the mass and age of a star eclipsed by a planet or other dark body based on its observed properties and a state-of-the art set of stellar models.Comment: Accepted for publication in A&A. 9 pages, 4 figures. Source code for the software described is available from http://sourceforge.net/projects/bagemas

    Orbital periods of the binary sdB stars PG0940+068 and PG1247+554

    Get PDF
    We have used the radial velocity variations of two sdB stars previously reported to be binaries to establish their orbital periods. They are PG0940+068, (P=8.33d) and PG1247+554 (P=0.599d). The minimum masses of the unseen companions, assuming a mass of 0.5 solar masses for the sdB stars, are 0.090 +/- 0.003 solar masses for PG1247+554 and 0.63 +/- 0.02 solar masses for PG0940+068. The nature of the companions is not constrained further by our data.Comment: 5 pages, 2 figure

    CWRML: representing crop wild relative conservation and use data in XML

    Get PDF
    Background Crop wild relatives are wild species that are closely related to crops. They are valuable as potential gene donors for crop improvement and may help to ensure food security for the future. However, they are becoming increasingly threatened in the wild and are inadequately conserved, both in situ and ex situ. Information about the conservation status and utilisation potential of crop wild relatives is diverse and dispersed, and no single agreed standard exists for representing such information; yet, this information is vital to ensure these species are effectively conserved and utilised. The European Community-funded project, European Crop Wild Relative Diversity Assessment and Conservation Forum, determined the minimum information requirements for the conservation and utilisation of crop wild relatives and created the Crop Wild Relative Information System, incorporating an eXtensible Markup Language (XML) schema to aid data sharing and exchange. Results Crop Wild Relative Markup Language (CWRML) was developed to represent the data necessary for crop wild relative conservation and ensure that they can be effectively utilised for crop improvement. The schema partitions data into taxon-, site-, and population-specific elements, to allow for integration with other more general conservation biology schemata which may emerge as accepted standards in the future. These elements are composed of sub-elements, which are structured in order to facilitate the use of the schema in a variety of crop wild relative conservation and use contexts. Pre-existing standards for data representation in conservation biology were reviewed and incorporated into the schema as restrictions on element data contents, where appropriate. Conclusion CWRML provides a flexible data communication format for representing in situ and ex situ conservation status of individual taxa as well as their utilisation potential. The development of the schema highlights a number of instances where additional standards-development may be valuable, particularly with regard to the representation of population-specific data and utilisation potential. As crop wild relatives are intrinsically no different to other wild plant species there is potential for the inclusion of CWRML data elements in the emerging standards for representation of biodiversity data

    Graphs of attenuation of waves with depth

    No full text

    A Survey for Spectroscopic Binaries Among Very Low-Mass Stars

    Full text link
    We report on the results of a survey for radial velocity variability in a heterogeneous sample of very low-mass stars and brown dwarfs. One distinguishing characteristic of the survey is its timespan, which allows an overlap between spectroscopic binaries and those which can be found by high angular-resolution imaging. We are able to place a new constraint on the total binary fraction in these objects, which suggests that they are more likely the result of extending the same processes at work at higher masses into this mass range, rather than a distinct mode of formation. Our basic result is that there are 6±26 \pm 2 out of 53, or 110.04+0.0711^{+0.07}_{-0.04}% spectroscopic binaries in the separation range 0-6 AU, nearly as many as resolved binaries. This leads to an estimate of an upper limit of 26±1026 \pm 10% for the binary fraction of VLM objects (it is an upper limit because of the possible overlap between the spectroscopic and resolved populations). A reasonable estimate for the very low-mass binary fraction is 202520 - 25%. We consider several possible separation and frequency distributions, including the same one as found for GK stars, a compressed version of that, a version of the compressed distribution truncated at 15 AU, and a theoretical distribution which considers the evaporation of small-N clusters. We conclude that the latter two bracket the observations, which may mean that these systems form with intrinsically smaller separations due to their smaller mass, and then are truncated due to their smaller binding energy. We do not find support for the ``ejection hypothesis'' as their dominant mode of formation, particularly in view of the similarity in the total binary fraction compared with slightly more massive stars, and the difficulty this mechanism has in producing numerous binary systems.Comment: 36 pages, accepted for publication in AJ, abstract shortened for arXiv.or

    SDSS J080531.84+481233.0: An Unresolved L Dwarf/T Dwarf Binary

    Full text link
    SDSS J080531.84+481233.0 is a peculiar L-type dwarf that exhibits unusually blue near-infrared and mid-infrared colors and divergent optical (L4) and near-infrared (L9.5) spectral classifications. These peculiar spectral traits have been variously attributed to condensate cloud effects or subsolar metallicity. Here I present an improved near-infrared spectrum of this source which further demonstrates the presence of weak CH4 absorption at 1.6 micron but no corresponding band at 2.2 micron. It is shown that these features can be collectively reproduced by the combined light spectrum of a binary with L4.5 and T5 components, as deduced by spectral template matching. Thus, SDSS J080531.84+481233.0 appears to be a new low-mass binary straddling the L dwarf/T dwarf transition, an evolutionary phase for brown dwarfs that remains poorly understood by current theoretical models. The case of SDSS J080531.84+481233.0 further illustrates how a select range of L dwarf/T dwarf binaries could be identified and characterized without the need for high angular resolution imaging or radial velocity monitoring, potentially alleviating some of the detection biases and limitations inherent to such techniques.Comment: 11 pages, 4 figures, accepted by A

    Absolute dimensions of detached eclipsing binaries. I. The metallic-lined system WW Aurigae

    Full text link
    WW Aurigae is a detached eclipsing binary composed of two metallic-lined A-type stars orbiting each other every 2.5 days. We have determined the masses and radii of both components to accuracies of 0.4 and 0.6 percent, respectively. From a cross-correlation analysis of high-resolution spectra we find masses of 1.964 +/- 0.007 Msun for the primary star and 1.814 +/- 0.007 Msun for the secondary star. From an analysis of photoelectric uvby and UBV light curves we find the radii of the stars to be 1.927 +/- 0.011 Rsun and 1.841 +/- 0.011 Rsun, where the uncertainties have been calculated using a Monte Carlo algorithm. Fundamental effective temperatures of the two stars have been derived, using the Hipparcos parallax of WW Aur and published ultraviolet, optical and infrared fluxes, and are 7960 +/- 420 and 7670 +/- 410 K. The masses, radii and effective temperatures of WW Aur are only matched by theoretical evolutionary models for a fractional initial metal abundance, Z, of approximately 0.06 and an age of roughly 90 Myr. This seems to be the highest metal abundance inferred for a well-studied detached eclipsing binary, but we find no evidence that it is related to the metallic-lined nature of the stars. The circular orbit of WW Aur is in conflict with the circularization timescales of both the Tassoul and the Zahn tidal theories and we suggest that this is due to pre-main-sequence evolution or the presence of a circular orbit when the stars were formed.Comment: Accepted for publication in MNRAS (14 pages, 8 figures). Photometric data will be made available at the CDS once the final version appear

    Two new hot subdwarf binaries in the GALEX survey

    Full text link
    We report the discovery of two new hot, hydrogen-rich subdwarfs (sdB) in close binary systems. The hot subdwarfs, GALEX J0321+4727 and GALEX J2349+3844, were selected from a joint optical-ultraviolet catalogue of hot sub-luminous stars based on GSC2.3.2 and the Galaxy Evolution Explorer all-sky survey. Using high-dispersion spectra of the Halpha core obtained using the 2m telescope at Ondrejov Observatory we measured the radial velocities of the sdB primaries and determined orbital periods of 0.26584+/-0.00004 days and 0.46249+/-0.00007 days for GALEX J0321+4727 and GALEX J2349+3844, respectively. The time series obtained from the Northern Sky Variability Survey with an effective wavelength near the R band show that GALEX J0321+4727 is a variable star (Delta m=0.12 mag) while no significant variations are observed in GALEX J2349+3844. The period of variations in GALEX J0321+4727 coincides with the orbital period and the variability is probably caused by a reflection effect on a late-type secondary star. Lack of photometric variations in GALEX J2349+3844 probably indicates that the companion is a white dwarf star. Using all available photometry and spectroscopy, we measured the atmospheric properties of the two sdB stars and placed limits on the mass and luminosity of the companion stars.Comment: Accepted for publication in MNRA

    Irradiated brown dwarfs

    Full text link
    We have observed the post common envelope binary WD0137-349 in the near infrared JJ, HH and KK bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.Comment: 5 pages, 2 figures. Proceedings from "Brown dwarfs come of age" meeting in Fuerteventura 201

    Rotational period of WD1953-011 - a magnetic white dwarf with a star spot

    Get PDF
    WD1953-011 is an isolated, cool (7920 +/- 200K, Bergeron, Legget & Ruiz, 2001) magnetic white dwarf (MWD) with a low average field strength (~70kG, Maxted et al. 2000) and a higher than average mass (~0.74 M_sun, Bergeron et al. 2001). Spectroscopic observations taken by Maxted et al. (2000) showed variations of equivalent width in the Balmer lines, unusual in a low field white dwarf. Here we present V band photometry of WD1953-011 taken at 7 epochs over a total of 22 months. All of the datasets show a sinusoidal variation of approximately 2% peak-to-peak amplitude. We propose that these variations are due to a star spot on the MWD, analogous to a sunspot, which is affecting the temperature at the surface, and therefore its photometric magnitude. The variations have a best-fit period over the entire 22 months of 1.4418 days, which we interpret as the rotational period of the WD.Comment: (1) University of Southampton, (2) University of Warwick, (3) University of Nijmegen, (4) Keele University, (5) University of Leicester. 6 pages, 5 figs, accepted MNRA
    corecore