414 research outputs found
Determination of Fluorescence Polarization and Absorption Anisotropy in Molecular Complexes Having Threefold Rotational Symmetry
The current work concerns investigation of the polarization properties of complex molecular ensembles exhibiting threefold (C3) rotational symmetry, particularly with regard to the interplay between their structure and dynamics of internal energy transfer. We assume that the molecules or chromophores in such complexes possess strongly overlapped spectra both for absorption and fluorescence. Such trimeric structures are widely found in biological preparations, as for example the trimer of C-phycocyanin (C-PC). Higher order aggregates, e.g. hex-amers and three-hexamer rods, are also investigated and compared with the trimer case. The theory addresses both steady-state and 8-pulse excitation and establishes some links between them. Monochromophoric, bichro-mophoric and trichromophoric molecular complexes are individually examined. For steady-state excitation, analytical formulas are reported for the degree of fluorescence polarization and absorption anisotropy. It is shown that the polarization is dependent on the chromophore inclination relative to the symmetry axis, the relative efficiencies of absorption and fluorescence by chromophores of different spectral types, and the rates of energy equilibration. To assess the validity of the theory, it has been applied to C-PC aggregates. Here it was found that different C-PC aggregates provide practically identical polarization response. For S-pulse excitation we give analytical formulas for determination of the fluorescence depolarization, and also the depolarization associated with absorption recovery, both for a monochromophoric trimer and some particular cases of bichromophoric trimer. More complicated systems are analyzed by computer modeling. Thus it transpires that the initial polarization anisotropy r(t = 0) takes the value 0.4 for all considered aggregates; the long-time limit r(t →∞) has about the same value as is associated with steady-state excitation. We also show that with steady-state excitation the degree of fluorescence polarization is practically equal for various C3 aggregates of C-PC, and that the major factor determining the polarization is the chromophore orientation relative to the symmetry axis
Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration
In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life1, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge2 are regulated by the surrounding microenvironment, or niche3. The activation of such stem cells is cyclic, involving periodic -catenin activity4, 5, 6, 7. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug delivery and stem cell engineering studies, because they highlight the acute need to differentiate supportive versus inhibitory regions in the host skin
The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery
Legionella pneumophila infects human alveolar macrophages and is responsible for Legionnaire’s disease, a severe form of pneumonia. L. pneumophila encodes more than 300 putative effectors, which are translocated into the host cell via the Dot/Icm type IV secretion system. These effectors highjack the host’s cellular processes to allow bacterial intracellular growth and replication. Here we adopted a multidisciplinary approach to investigate WipB, a Dot/Icm effector of unknown function. The crystal structure of the N-terminal domain at 1.7 Å resolution comprising residues 25 to 344 revealed that WipB harbours a Ser/Thr phosphatase domain related to the eukaryotic phospho-protein phosphatase (PPP) family. The C-terminal domain (residues 365–524) is sufficient to pilot the effector to acidified LAMP1-positive lysosomal compartments, where WipB interacts with the v-ATPase and the associated LAMTOR1 phosphoprotein, key components of the lysosomal nutrient sensing (LYNUS) apparatus that controls the mammalian target of rapamycin (mTORC1) kinase complex at the lysosomal surface. We propose that WipB is a lysosome-targeted phosphatase that modulates cellular nutrient sensing and the control of energy metabolism during Legionella infection
Genetic Mapping of Social Interaction Behavior in B6/MSM Consomic Mouse Strains
Genetic studies are indispensable for understanding the mechanisms by which individuals develop differences in social behavior. We report genetic mapping of social interaction behavior using inter-subspecific consomic strains established from MSM/Ms (MSM) and C57BL/6J (B6) mice. Two animals of the same strain and sex, aged 10 weeks, were introduced into a novel open-field for 10 min. Social contact was detected by an automated system when the distance between the centers of the two animals became less than ~12 cm. In addition, detailed behavioral observations were made of the males. The wild-derived mouse strain MSM showed significantly longer social contact as compared to B6. Analysis of the consomic panel identified two chromosomes (Chr 6 and Chr 17) with quantitative trait loci (QTL) responsible for lengthened social contact in MSM mice and two chromosomes (Chr 9 and Chr X) with QTL that inhibited social contact. Detailed behavioral analysis of males identified four additional chromosomes associated with social interaction behavior. B6 mice that contained Chr 13 from MSM showed more genital grooming and following than the parental B6 strain, whereas the presence of Chr 8 and Chr 12 from MSM resulted in a reduction of those behaviors. Longer social sniffing was observed in Chr 4 consomic strain than in B6 mice. Although the frequency was low, aggressive behavior was observed in a few pairs from consomic strains for Chrs 4, 13, 15 and 17, as well as from MSM. The social interaction test has been used as a model to measure anxiety, but genetic correlation analysis suggested that social interaction involves different aspects of anxiety than are measured by open-field test
The Effect of Urban Street Gang Densities on Small Area Homicide Incidence in a Large Metropolitan County, 1994–2002
The presence of street gangs has been hypothesized as influencing overall levels of violence in urban communities through a process of gun–drug diffusion and cross-type homicide. This effect is said to act independently of other known correlates of violence, i.e., neighborhood poverty. To test this hypothesis, we independently assessed the impact of population exposure to local street gang densities on 8-year homicide rates in small areas of Los Angeles County, California. Homicide data from the Los Angeles County Coroners Office were analyzed with original field survey data on street gang locations, while controlling for the established covariates of community homicide rates. Bivariate and multivariate regression analyses explicated strong relationships between homicide rates, gang density, race/ethnicity, and socioeconomic structure. Street gang densities alone had cumulative effects on small area homicide rates. Local gang densities, along with high school dropout rates, high unemployment rates, racial and ethnic concentration, and higher population densities, together explained 90% of the variation in local 8-year homicide rates. Several other commonly considered covariates were insignificant in the model. Urban environments with higher densities of street gangs exhibited higher overall homicide rates, independent of other community covariates of homicide. The unique nature of street gang killings and their greater potential to influence future local rates of violence suggests that more direct public health interventions are needed alongside traditional criminal justice mechanisms to combat urban violence and homicides
The Role of Paracrine and Autocrine Signaling in the Early Phase of Adipogenic Differentiation of Adipose-derived Stem Cells.
INTRODUCTION: High cell density is known to enhance adipogenic differentiation of mesenchymal stem cells, suggesting secretion of signaling factors or cell-contact-mediated signaling. By employing microfluidic biochip technology, we have been able to separate these two processes and study the secretion pathways. METHODS AND RESULTS: Adipogenic differentiation of human adipose-derived stem cells (ASCs) cultured in a microfluidic system was investigated under perfusion conditions with an adipogenic medium or an adipogenic medium supplemented with supernatant from differentiating ASCs (conditioned medium). Conditioned medium increased adipogenic differentiation compared to adipogenic medium with respect to accumulation of lipid-filled vacuoles and gene expression of key adipogenic markers (C/EBPα, C/EBPβ, C/EBPδ, PPARγ, LPL and adiponectin). The positive effects of conditioned medium were observed early in the differentiation process. CONCLUSIONS: Using different cell densities and microfluidic perfusion cell cultures to suppress the effects of cell-released factors, we have demonstrated the significant role played by auto- or paracrine signaling in adipocyte differentiation. The cell-released factor(s) were shown to act in the recruitment phase of the differentiation process
Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium
<p>Abstract</p> <p>Background</p> <p><it>Msx1 </it>and <it>Msx2</it>, which belong to the highly conserved <it>Nk </it>family of homeobox genes, display overlapping expression patterns and redundant functions in multiple tissues and organs during vertebrate development. <it>Msx1 </it>and <it>Msx2 </it>have well-documented roles in mediating epithelial-mesenchymal interactions during organogenesis. Given that both <it>Msx1 </it>and <it>Msx2 </it>are crucial downstream effectors of Bmp signaling, we investigated whether <it>Msx1 </it>and <it>Msx2 </it>are required for the Bmp-induced endothelial-mesenchymal transformation (EMT) during atrioventricular (AV) valve formation.</p> <p>Results</p> <p>While both <it>Msx1-/- </it>and <it>Msx2-/- </it>single homozygous mutant mice exhibited normal valve formation, we observed hypoplastic AV cushions and malformed AV valves in <it>Msx1-/-; Msx2-/- </it>mutants, indicating redundant functions of <it>Msx1 </it>and <it>Msx2 </it>during AV valve morphogenesis. In <it>Msx1/2 </it>null mutant AV cushions, we found decreased Bmp2/4 and <it>Notch1 </it>signaling as well as reduced expression of <it>Has2</it>, <it>NFATc1 </it>and <it>Notch1</it>, demonstrating impaired endocardial activation and EMT. Moreover, perturbed expression of chamber-specific genes <it>Anf</it>, <it>Tbx2</it>, <it>Hand1 </it>and <it>Hand2 </it>reveals mispatterning of the <it>Msx1/2 </it>double mutant myocardium and suggests functions of <it>Msx1 </it>and <it>Msx2 </it>in regulating myocardial signals required for remodelling AV valves and maintaining an undifferentiated state of the AV myocardium.</p> <p>Conclusion</p> <p>Our findings demonstrate redundant roles of <it>Msx1 </it>and <it>Msx2 </it>in regulating signals required for development of the AV myocardium and formation of the AV valves.</p
From Stop to Start: Tandem Gene Arrangement, Copy Number and Trans-Splicing Sites in the Dinoflagellate Amphidinium carterae
Dinoflagellate genomes present unique challenges including large size, modified DNA bases, lack of nucleosomes, and condensed chromosomes. EST sequencing has shown that many genes are found as many slightly different variants implying that many copies are present in the genome. As a preliminary survey of the genome our goal was to obtain genomic sequences for 47 genes from the dinoflagellate Amphidinium carterae. A PCR approach was used to avoid problems with large insert libraries. One primer set was oriented inward to amplify the genomic complement of the cDNA and a second primer set would amplify outward between tandem repeats of the same gene. Each gene was also tested for a spliced leader using cDNA as template. Almost all (14/15) of the highly expressed genes (i.e. those with high representation in the cDNA pool) were shown to be in tandem arrays with short intergenic spacers, and most were trans-spliced. Only two moderately expressed genes were found in tandem arrays. A polyadenylation signal was found in genomic copies containing the sequence AAAAG/C at the exact polyadenylation site and was conserved between species. Four genes were found to have a high intron density (>5 introns) while most either lacked introns, or had only one to three. Actin was selected for deeper sequencing of both genomic and cDNA copies. Two clusters of actin copies were found, separated from each other by many non-coding features such as intron size and sequence. One intron-rich gene was selected for genomic walking using inverse PCR, and was not shown to be in a tandem repeat. The first glimpse of dinoflagellate genome indicates two general categories of genes in dinoflagellates, a highly expressed tandem repeat class and an intron rich less expressed class. This combination of features appears to be unique among eukaryotes
An Ultra-Compact X-Ray Free-Electron Laser
In the field of beam physics, two frontier topics have taken center stage due
to their potential to enable new approaches to discovery in a wide swath of
science. These areas are: advanced, high gradient acceleration techniques, and
x-ray free electron lasers (XFELs). Further, there is intense interest in the
marriage of these two fields, with the goal of producing a very compact XFEL.
In this context, recent advances in high gradient radio-frequency cryogenic
copper structure research have opened the door to the use of surface electric
fields between 250 and 500 MV/m. Such an approach is foreseen to enable a new
generation of photoinjectors with six-dimensional beam brightness beyond the
current state-of-the-art by well over an order of magnitude. This advance is an
essential ingredient enabling an ultra-compact XFEL (UC-XFEL). In addition, one
may accelerate these bright beams to GeV scale in less than 10 meters. Such an
injector, when combined with inverse free electron laser-based bunching
techniques can produce multi-kA beams with unprecedented beam quality,
quantified by ~50 nm-rad normalized emittances. These beams, when injected into
innovative, short-period (1-10 mm) undulators uniquely enable UC-XFELs having
footprints consistent with university-scale laboratories. We describe the
architecture and predicted performance of this novel light source, which
promises photon production per pulse of a few percent of existing XFEL sources.
We review implementation issues including collective beam effects, compact
x-ray optics systems, and other relevant technical challenges. To illustrate
the potential of such a light source to fundamentally change the current
paradigm of XFELs with their limited access, we examine possible applications
in biology, chemistry, materials, atomic physics, industry, and medicine which
may profit from this new model of performing XFEL science.Comment: 80 pages, 24 figure
- …