7 research outputs found

    Better Pumps: Promoting Reliable Water Infrastructure for Everyone

    Get PDF
    Approximately 90 million people in Africa lack access to safe drinking water, despite having water infrastructure installed in their community. The Better Pumps team of the Collaboratory provides engineering support for partners working to sustain reliable water infrastructure for everyone. We have partnered with AlignedWorks to test an improved bearing design for the India MK II handpump. We have also partnered with Matt Schweibert and the Rural Water Supply Network to test improved seal designs for the India MK II and the Afridev handpumps. Test designs and preliminary results are reported.https://mosaic.messiah.edu/engr2020/1021/thumbnail.jp

    Better Pumps: Promoting Reliable Water Infrastructure for Everyone

    Get PDF
    Approximately 90 million people in Africa lack access to safe drinking water, despite having water infrastructure installed in their community. The India Mark II and the Afridev handpumps are among the most widely used handpumps in the world. Sadly, studies show that approximately 30% of these handpumps are non-operational due to failures of the bearings, seals, head flange, and other common components. The Better Pumps team of the Collaboratory provides engineering support for partners who are working to improve handpump sustainability. We have partnered with Tony Beers and AlignedWorks to validate a bearing test methodology for the India Mark II handpump. By modifying the loading conditions in our handpump test machine, we were able to replicate failures observed by AlignedWorks in a field trial of their bearing design. However, these modifications caused our test machine tabletop to noticeably deflect, so we made modifications to stiffen the tabletop. We partnered with Matt Schwiebert and Living Water International to test new seal designs for the India Mark II and Afridev handpumps. Seal performance data collected by the team was used to validate a new design in advance of field trials by Living Water International. We developed and performed clear cylinder testing on the seals to visualize the leak paths. A new Afridev testing apparatus is being designed to test the longevity of the Afridev bearings and seals. Test methodologies and results are reported. Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research.https://mosaic.messiah.edu/engr2022/1000/thumbnail.jp

    Better Pumps: Reliable Handpump Infrastructure

    Get PDF
    Approximately 90 million people in Africa lack access to safe drinking water, despite having water infrastructure installed in their community. The India Mark II and the Afridev handpumps are among the most widely used handpumps in the world. Sadly, studies show that approximately 30% of these handpumps are non-operational due to failures of the bearings, seals, head flange, and other common components. The Better Pumps team of the Collaboratory provides engineering support for partners who are working to improve handpump sustainability. We partnered with Tony Beers and AlignedWorks to validate a bearing test methodology for the India Mark II handpump. By modifying the loading conditions in our handpump test machine, we were able to replicate failures observed by AlignedWorks in a field trial of their bearing design. We partnered with Matt Schwiebert and Living Water International to test new seal designs for the India Mark II and Afridev handpumps and to measure head flange deflections in the India Mark II handpump. Seal performance data collected by the team was used to validate a new design in advance of field trials by Living Water International. Head flange deflection data was collected for partner benchmarking of their computational analysis. Test methodologies and results are reported.https://mosaic.messiah.edu/engr2021/1000/thumbnail.jp

    Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis

    No full text
    We report that larvae of the wax moth (Galleria mellonella) are susceptible to infection with the human enteropathogen Yersinia pseudotuberculosis at 37 degrees C. Confocal microscopy demonstrated that in the initial stages of infection the bacteria were taken up into haemocytes. To evaluate the utility of this model for screening Y. pseudotuberculosis mutants we constructed and tested a superoxide dismutase C (sodC) mutant. This mutant showed increased susceptibility to superoxide, a key mechanism of killing in insect haemocytes and mammalian phagocytes. It showed reduced virulence in the murine yersiniosis infection model and in contrast to the wild-type strain IP32953 was unable to kill G. mellonella. The complemented mutant regained all phenotypic properties associated with SodC, confirming the important role of this metalloenzyme in two Y. pseudotuberculosis infection models

    TNK1 is a ubiquitin-binding and 14-3-3-regulated kinase that can be targeted to block tumor growth.

    No full text
    TNK1 is a non-receptor tyrosine kinase with poorly understood biological function and regulation. Here, we identify TNK1 dependencies in primary human cancers. We also discover a MARK-mediated phosphorylation on TNK1 at S502 that promotes an interaction between TNK1 and 14-3-3, which sequesters TNK1 and inhibits its kinase activity. Conversely, the release of TNK1 from 14-3-3 allows TNK1 to cluster in ubiquitin-rich puncta and become active. Active TNK1 induces growth factor-independent proliferation of lymphoid cells in cell culture and mouse models. One unusual feature of TNK1 is a ubiquitin-association domain (UBA) on its C-terminus. Here, we characterize the TNK1 UBA, which has high affinity for poly-ubiquitin. Point mutations that disrupt ubiquitin binding inhibit TNK1 activity. These data suggest a mechanism in which TNK1 toggles between 14-3-3-bound (inactive) and ubiquitin-bound (active) states. Finally, we identify a TNK1 inhibitor, TP-5801, which shows nanomolar potency against TNK1-transformed cells and suppresses tumor growth in vivo

    The importance of the Rcs phosphorelay in the survival and pathogenesis of the enteropathogenic yersiniae.

    No full text
    The human-pathogenic yersiniae represent an ideal species group to study the evolution of highly virulent bacteria, with Yersinia pestis having emerged from the enteropathogen Y. pseudotuberculosis an estimated 20 000 years ago. Sequence data reveal that the Y. pestis genome is in the early stages of decay and contains hundreds of non-functioning pseudogenes, some of which may be important in the enteric lifestyle of Y. pseudotuberculosis. Bioinformatic analysis of pseudogenes from seven Y. pestis genome sequences identified rcsD as a gene disrupted early in the evolution of this organism. This phosphotransfer protein is part the of the Rcs phosphorelay, a two-component system present in the Enterobacteriaceae which has been shown to regulate the expression of capsular polysaccharide and other virulence determinants in several species including Escherichia coli and Salmonella. Using microarray analysis, we determined that the Y. pseudotuberculosis Rcs phosphorelay regulates the expression of 136 coding sequences, of which 60 % are predicted to affect the cell envelope. Several putative virulence determinants were identified as being regulated by this phosphorelay, along with proteins involved in biofilm formation, motility, mammalian cell adhesion and stress survival. Phenotypic assays on defined mutants confirmed a role for the phosphorelay in these processes in both Y. pseudotuberculosis and Y. enterocolitica
    corecore