3,557 research outputs found

    Deep Appearance Maps

    No full text
    We propose a deep representation of appearance, i. e. the relation of color, surface orientation, viewer position, material and illumination. Previous approaches have used deep learning to extract classic appearance representations relating to reflectance model parameters (e. g. Phong) or illumination (e. g. HDR environment maps). We suggest to directly represent appearance itself as a network we call a deep appearance map (DAM). This is a 4D generalization over 2D reflectance maps, which held the view direction fixed. First, we show how a DAM can be learned from images or video frames and later be used to synthesize appearance, given new surface orientations and viewer positions. Second, we demonstrate how another network can be used to map from an image or video frames to a DAM network to reproduce this appearance, without using a lengthy optimization such as stochastic gradient descent (learning-to-learn). Finally, we generalize this to an appearance estimation-and-segmentation task, where we map from an image showing multiple materials to multiple networks reproducing their appearance, as well as per-pixel segmentation

    Deep Appearance Maps

    Get PDF
    We propose a deep representation of appearance, i.e. the relation of color, surface orientation, viewer position, material and illumination. Previous approaches have used deep learning to extract classic appearance representations relating to reflectance model parameters (e.g. Phong) or illumination (e.g. HDR environment maps). We suggest to directly represent appearance itself as a network we call a deep appearance map (DAM). This is a 4D generalization over 2D reflectance maps, which held the view direction fixed. First, we show how a DAM can be learned from images or video frames and later be used to synthesize appearance, given new surface orientations and viewer positions. Second, we demonstrate how another network can be used to map from an image or video frames to a DAM network to reproduce this appearance, without using a lengthy optimization such as stochastic gradient descent (learning-to-learn). Finally, we show the example of an appearance estimation-and-segmentation task, mapping from an image showing multiple materials to multiple deep appearance maps

    Low-field diffusion magneto-thermopower of a high mobility two-dimensional electron gas

    Full text link
    The low magnetic field diffusion thermopower of a high mobility GaAs-heterostructure has been measured directly on an electrostatically defined micron-scale Hall-bar structure at low temperature (T = 1.6 K) in the low magnetic field regime (B < 1.2 T) where delocalized quantum Hall states do not influence the measurements. The sample design allowed the determination of the field dependence of the thermopower both parallel and perpendicular to the temperature gradient, denoted respectively by Sxx (longitudinal thermopower) and Syx (Nernst-Ettinghausen coefficient). The experimental data show clear oscillations in Sxx and Syx due to the formation of Landau levels for 0.3 T < B < 1.2 T and reveal that Syx is approximately 120 times larger than Sxx at a magnetic field of 1 T, which agrees well with the theoretical prediction.Comment: 4 pages, 4 figure

    A36 The TP53 mutations in the Russian patients with de novo DLBCL

    Get PDF
    BackgroundTP53 dysfunction is implicated in lymphomagenesis and disease progression. Information about the frequency and spectrum of TP53 mutations in the Russian pathients with diffuse large B-cell lymphoma (DLBCL) in the current version of the IARC TP53 Mutation Database R17 is not represented. The goal of this work was to study the frequency, spectrum and functional significance of TP53 mutations in Russian patients with DLBCL.Material and methodsAt the present time the pilot group of 14 patients were included in the study. Diagnosis was assessed according to the criteria of the WHO classification system. Genomic DNA was isolated from formalin-fixed, paraffin embedded tissue blocks. Direct sequence analysis of gene TP53 was performed according to the IARC protocol, 2010 update.ResultsIn two patients were identified single nucleotide substitutions that are not described in the current version of the PubMed database. All of mutations occurred in the DNA-binding domain of p53. The nonsense mutation Arg196Ter was detected in one patient. Previously it was shown that formation of this premature stop codon might activate the nonsense-mediated RNA decay pathway. The second patient had two missense mutations – Leu130Phe and Arg156Cys. The first of them leads to p53 inactivation according to the analysis of the functional importance of amino acid substitutions using service PolyPhen-2.ConclusionWe detected TP53 mutation in 14% cases. The mutational rate in our study is in good agreement with other studies where the frequency of the TP53 mutations in patients with DLBCL ranged mostly from 13% to 23%

    How much laser power can propagate through fusion plasma?

    Full text link
    Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data, and suggest a way to increase that maximum by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and suggests the indirect control of backscatter through manipulation of plasma ionization state or acoustic damping.Comment: 15 pages, 4 figures, submitted to Plasma Physics and Controlled Fusio

    Critical Strain Region Evaluation of Self-Assembled Semiconductor Quantum Dots

    Get PDF
    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga) As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor device

    Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering

    No full text
    An efficient method to describe the nonlinear evolution of stimulated Brillouin scattering(SBS) in long scale-length plasmas is presented in the limit of a fluid description. The method is based on the decomposition of the various functions characterizing the plasma into their long- and short-wavelength components. It makes it possible to describe self-consistently the interplay between the plasmahydrodynamics,stimulated Brillouin scattering, and the generation of harmonics of the excited ion acoustic wave(IAW). This description is benchmarked numerically in one and two spatial dimensions [one dimensional (1D), two dimensional (2D)], by comparing the numerical results obtained along this method with those provided by a numerical code in which the decomposition into separate spatial scales is not made. The decomposition method proves to be very efficient in terms of computing time, especially in 2D, and very reliable, even in the extreme case of undamped ion acoustic waves. A novel picture of the SBS nonlinear behavior arises, in which the IAWharmonics generation gives rise to local defects appearing in the density and velocity hydrodynamics profiles. Consequently, SBS develops in various spatial domains which seem to be decorrelated one from each other, so that the backscattered Brillouin light is the sum of various backscatteredwaves generated in several independent spatial domains. It follows that the SBSreflectivity is chaotic in time and the resulting time-averaged value is significantly reduced as compared to the case when the IAWharmonics generation and flow modification are ignored. From the results of extensive numerical simulations carried out in 1D and 2D, we are able to infer the SBSreflectivity scaling law as a function of the plasma parameters and laser intensity, in the limit where the kinetic effects are negligible. It appears that this scaling law can be derived in the limit where the IAWharmonics generation is modeled simply by a nonlinear frequency shift
    corecore