4 research outputs found

    Respiratory syncytial virus (RSV) infects primary neonatal and adult natural killer cells and affects their anti-viral effector function.

    No full text
    Respiratory syncytial virus (RSV) is a major cause of severe acute lower respiratory tract infections in infants. Natural killer (NK) cells are important anti-viral effector cells that likely encounter RSV in the presence of virus-specific (maternal) antibodies. Since NK cells potentially contribute to immunopathology, we investigated whether RSV affects their anti-viral effector functions

    Immune landscape of breast tumors with low and intermediate estrogen receptor expression

    No full text
    Abstract Immune checkpoint blockade (ICB) is currently approved for patients with triple-negative breast cancer (TNBC), whereas responses to ICB are also observed in a small subgroup of Estrogen Receptor (ER)-positive breast cancer. The cut-off for ER-positivity (≥1%) is based on likelihood of endocrine treatment response, but ER-positive breast cancer represents a very heterogeneous group. This raises the question whether selection based on ER-negativity should be revisited to select patients for ICB treatment in the context of clinical trials. Stromal tumor-infiltrating lymphocytes (sTILs) and other immune parameters are higher in TNBC compared to ER-positive breast cancer, but it is unknown whether lower ER levels are associated with more inflamed tumor microenvironments (TME). We collected a consecutive series of primary tumors from 173 HER2-negative breast cancer patients, enriched for tumors with ER expression between 1 and 99% and found levels of stromal TILs, CD8 + T cells, and PD-L1 positivity in breast tumors with ER 1–9% and ER 10–50% to be comparable to tumors with ER 0%. Expression of immune-related gene signatures in tumors with ER 1–9% and ER 10–50% was comparable to ER 0%, and higher than in tumors with ER 51–99% and ER 100%. Our results suggest that the immune landscape of ER low tumors (1–9%) and ER intermediate tumors (10–50%) mimic that of primary TNBC

    Uncovering Distinct Primary Vaccination-Dependent Profiles in Human Specific CD4+ T-Cell Responses Using a Novel Whole Blood Assay.

    No full text
    To advance research and development of improved pertussis vaccines, new immunoassays are needed to qualify the outcome of Bordetella pertussis (Bp) specific CD4+ T-cell differentiation. Here, we applied a recently developed whole blood assay to evaluate Bp specific CD4+ T-cell responses. The assay is based on intracellular cytokine detection after overnight in vitro Bp antigen stimulation of diluted whole blood. We show for the first time that CD4+ T-cell memory of Th1, Th2, and Th17 lineages can be identified simultaneously in whole blood. Participants ranging from 7 to 70 years of age with different priming backgrounds of whole-cell pertussis (wP) and acellular pertussis (aP) vaccination were analyzed around an acellular booster vaccination. The assay allowed detection of low frequent antigen-specific CD4+ T-cells and revealed significantly elevated numbers of activated and cytokine-producing CD4+ T-cells, with a significant tendency to segregate recall responses based on primary vaccination background. A stronger Th2 response hallmarked an aP primed cohort compared to a wP primed cohort. In conclusion, analysis of Bp specific CD4+ T-cell responses in whole blood showed separation based on vaccination background and provides a promising tool to assess the quantity and quality of CD4+ T-cell responses induced by vaccine candidates

    IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer

    No full text
    Immune checkpoint blockade (ICB) has heralded a new era in cancer therapy. Research into the mechanisms underlying response to ICB has predominantly focused on T cells; however, effective immune responses require tightly regulated crosstalk between innate and adaptive immune cells. Here, we combine unbiased analysis of blood and tumors from metastatic breast cancer patients treated with ICB with mechanistic studies in mouse models of breast cancer. We observe an increase in systemic and intratumoral eosinophils in patients and mice responding to ICB treatment. Mechanistically, ICB increased IL-5 production by CD4+ T cells, stimulating elevated eosinophil production from the bone marrow, leading to systemic eosinophil expansion. Additional induction of IL-33 by ICB-cisplatin combination or recombinant IL-33 promotes intratumoral eosinophil infiltration and eosinophil-dependent CD8+ T cell activation to enhance ICB response. This work demonstrates the critical role of eosinophils in ICB response and provides proof-of-principle for eosinophil engagement to enhance ICB efficacy
    corecore