206 research outputs found

    The modulated structure and frequency upconversion properties of CaLa2(MoO4)4:Ho3+/Yb3+ phosphors prepared by microwave synthesis

    Get PDF
    CaLa2_x(MoO4)4:Ho3+/Yb3+ phosphors with the doping concentrations of Ho3+ and Yb3+ (x = Ho3+ + Yb3+, Ho3+ = 0.05; Yb3+ = 0.35, 0.40, 0.45 and 0.50) have been successfully synthesized by the microwave sol-gel method. The modulated and averaged crystal structures of CaLa2_x(MoO4)4:Ho3+/Yb3+ molybdates have been found by the Rietveld method, and the upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after the heat-treatment at 900 °C for 16 h, showed a highly crystallized state. Under the excitation at 980 nm, CaLa2_x(MoO4)4:Ho3+/Yb3+ particles exhibited strong 545 and 655 nm emission bands in the green and red regions. When the Yb3+ :Ho3+ ratios are 9 : 1 and 10: 1, the UC intensity of CaLai.5(MoO4)4:Yb045/Ho0.05 and CaLai45(MoO4)4:Yb0.50/Ho0.05 particles is the highest for different bands. The CIE coordinates calculated for CaLa2_x(MoO4)4:Ho3+/Yb3+ phosphors are related to the yellow color field. The Raman spectrum of undoped CaLa2(MoO4)4 has revealed about 13 narrow lines. The strongest band observed at 906 cirT1 was assigned to the n1 symmetric stretching vibration of MoO4 tetrahedra. The spectra of the samples doped with Ho and Yb, as obtained under the 514.5 nm excitation, were dominated by Ho3+ luminescence over the wavenumber range of >700 cm-1 preventing the recording of the Raman spectra

    Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3

    Get PDF
    In this study, the Ba3Eu(PO4)3 and Sr3Eu(PO4)3 compounds were synthesized and the crystal structures were determined for the first time by Rietveld refinement using powder X-ray diffraction (XRD) patterns. Ba3Eu-(PO4)3 crystallizes in cubic space group I4¯3d, with cell parameters of a = 10.47996(9) Å, V = 1151.01(3) Å3 and Z = 4; Ba2+ and Eu3+ occupy the same site with partial occupancies of 3/4 and 1/4, respectively. Besides, in this structure, there exists two distorted kinds of the PO4 polyhedra orientation. Sr3Eu(PO4)3 is isostructural to Ba3Eu(PO4)3 and has much smaller cell parameters of a = 10.1203(2) Å, V = 1036.52(5) Å3. The bandgaps of Ba3Eu(PO4)3 and Sr3Eu(PO4)3 are determined to be 4.091 eV and 3.987 eV, respectively, based on the UV–Vis diffuse reflectance spectra. The photoluminescence measurements reveal that, upon 396 nm n-UV light excitation, Ba3Eu(PO4)3 and Sr3Eu(PO4)3 exhibit orange-red emission with two main peaks at 596 nm and prevailing 613 nm, corresponding to the 5D0 → 7F1 and 5D0 → 7F2 transitions of Eu3+, respectively. The dynamic disordering in the crystal structures contributes to the broadening of the luminescence spectra. The electronic structure of the hosphates was calculated by the first-principles method. The analysis elucidats that the band structures are mainly governed by the orbits of phosphorus, oxygen and europium, and the sharp peaks of the europium f-orbit occur at the top of the valence bands

    Electronic structure of β-RbSm(MoO4)(2) and chemical bonding in molybdates

    Get PDF
    Microcrystals of orthorhombic rubidium samarium molybdate, β-RbSm(MoO4)2, have been fabricated by solid state synthesis at T = 450 °C, 70 h, and at T = 600 °C, 150 h. The crystal structure has been refined by the Rietveld method in space group Pbcn with cell parameters a = 5.0984(2), b = 18.9742(6) and c = 8.0449(3) Å (RB = 1.72%). Thermal properties of β-RbSm(MoO4)2 were traced by DSC over the temperature range of T = 20–965 °C, and the earlier reported β ↔ α phase transition at T ∼ 860–910 °C was not verified. The electronic structure of β-RbSm(MoO4)2 was studied by employing theoretical calculations and X-ray photoelectron spectroscopy. It has been established that the O 2p-like states contribute mainly to the upper part of the valence band and occupy the valence band maximum, whereas the Mo 4d-like states contribute mainly to the lower part of the valence band. Chemical bonding effects have been analysed from the element core level binding energy data. In addition, it was found that the luminescence spectrum of β-RbSm(MoO4)2 is rather peculiar among the Sm3+ containing materials. The optical refractive index dispersion in β-RbSm(MoO4)2 was also predicted by the first-principles calculations

    Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12

    Get PDF
    New noncentrosymmetric rare earth borate Rb3NdB6O12 is found in the ternary system Rb2O–Nd2O3–B2O3. The Rb3NdB6O12 powder was fabricated by solid state synthesis at 1050 K for 72 h and the crystal structure was obtained by the Rietveld method. Rb3NdB6O12 crystallized in space group R32 with unit cell parameters a = 13.5236(4), c = 31.162(1) Å, Z = 3. From DSC measurements, the reversible phase transition (I type) in Rb3NdB6O12 is observed at 852–936 K. The 200 μm thick tablet is transparent over the spectral range of 0.3–6.5 μm and the band gap is found as Eg ∼ 6.29 eV. Nonlinear optical response of Rb3NdB6O12 tested via SHG is estimated to be higher than that of K3YB6O12. Blue shift of Nd luminescent lines is found in comparison with other borates. The vibrational parameters of Rb3NdB6O12 are evaluated by experimental methods

    Synthesis and growth of rare earth borates NaSrR(BO3)2 (R = Ho− Lu, Y, Sc)

    Get PDF
    NaSrR(BO3)2(R = Ho-Lu, Y, Sc) compounds were obtained for the first time. Their structures exhibit disordered positions of Sr2+and Na+ atoms while RO6polyhedra are connected through the BO3 groups. Large distances between R atoms and high transparency in the range of 250-900 nm make them promising for phosphor applications. A pathway to obtain single crystals was shown by growing NaSrY(BO3)2and NaSrYb-(BO3)2by the top seeded solution growth method with Na2O-B2O3-NaFflux
    corecore