11 research outputs found

    Hemilability of phosphine-thioether ligands coordinated to trinuclear Mo3S4 cluster and its effect on hydrogenation catalysis

    Get PDF
    Ligand-exchange reactions of [Mo3S4(tu)8(H2O)]Cl44H2O (tu = thiourea) with (PhCH2CH2)2PCH2CH2SR ligands, where R = Ph (PS1), pentyl (PS2) or Pr (PS3) afford new complexes isolated as [Mo3S4Cl3(PS1)3]PF6 ([1]PF6), [Mo3S4Cl3(PS2)3]PF6 ([2]PF6) and [Mo3S4Cl3(PS3)3]PF6 ([3]PF6) salts in 30-50% yields as the major reaction products. The crystal structures of [1]PF6 and [2]PF6 were determined by X-ray diffraction (XRD) analysis. Each of the three phosphine-thioether ligands is coordinated in a bidentate chelating mode to a different molybdenum atom of the Mo3S4 trinuclear cluster, herewith all the phosphorus atoms of the phosphino-thioether ligand are located trans to the capping sulfur (3-S). A second product that forms in the reaction of [Mo3S4(tu)8(H2O)]Cl44H2O with PS1 corresponds to the neutral [Mo3S4Cl4(PS1)2(PS1*)] complex. Its XRD analysis reveals both bidentate (PS1) and monodentate (PS1*) coordinating modes of the same ligand. In the latter mode the phosphinethioether is coordinated to a Mo atom only via the P atom. All compounds were characterized by 1H, 31P{1H} NMR, electrospray-ionization (ESI) mass spectrometry and cyclic voltammetry (CV). Reactions of [1]PF6, [2]PF6 and [3]PF6 with an excess of Bu4NCl in CD2Cl2 were followed by 31P{1H} NMR. The spectra indicate equilibrium between cationic [Mo3S4Cl3(PSn)3] + and neutral [Mo3S4Cl4(PSn)2(PSn*)] (n = 1, 2) species. The equilibrium constants were determined as 2.5 ± 0.2103 , 43 ± 2 М -1 and 30 ± 2 М -1 (at 25°C) for [1]PF6, [2]PF6 and [3]PF6, indicating quantitative differences in hemilabile behavior of the phosphino-thioether ligands, depending on the substituent at sulfur. Clusters [1]PF6, [2]PF6 and [3]PF6 were tested as catalysts in reduction of nitrobenzene to aniline with Ph2SiH2 under mild conditions. Significant differencies in the catalytic activity were observed, which can be attributed to different hemilabile behavior of the PS1 and PS2/PS3 ligands

    Cycloaddition of alkynes to diimino Mo3S4 cubane-type clusters: a combined experimental and theoretical approach

    Get PDF
    A heterocyclic ligand 4,40-di-tert-butyl-2,20-bipyridine (dbbpy) has been coordinated to the Mo3S4 cluster unit affording the complex [Mo3S4Cl3(dbbpy)3]+ ([1]+) in a one-step ligand-exchange protocol from [Mo3S4(tu)8(H2O)]Cl4 4H2O (tu = thiourea). The new cluster was isolated as [1]PF6 and [1]Cl salts in high yields and the crystal structure of the latter determined by X-ray analysis. The synthetic procedure was extended to tungsten to afford [W3S4Cl3(dbbpy)3]+ ([2]+). Kinetic and NMR studies show that [1]+ reacts with several alkynes to form dithiolene species via concerted [3+2] cycloaddition reactions whereas [2]+ remains inert under similar conditions. The different rates for the reactions of [1]+ are rationalised by computational (DFT) calculations, which show that the more electron-withdrawing the substituents of the alkyne the faster the reaction. The inertness of [2]+ is due to the endergonicity of its reactions, which feature DGr values systematically 5–7 kcal mol 1 more positive than for those of [1]+

    Molecular and Polymer Ln2M2 (Ln = Eu, Gd, Tb, Dy; M = Zn, Cd) Complexes with Pentafluorobenzoate Anions: The Role of Temperature and Stacking Effects in the Structure; Magnetic and Luminescent Properties

    No full text
    Varying the temperature of the reaction of [{Cd(pfb)(H2O)4}+n·n(pfb)−], [Ln2(pfb)6(H2O)8]·H2O (Hpfb = pentafluorobenzoic acid), and 1,10-phenanthroline (phen) in MeCN followed by crystallization resulted in the isolation of two type of products: 1D-polymers [LnCd(pfb)5(phen)]n·1.5nMeCN (Ln = Eu (I), Gd (II), Tb (III), Dy (IV)) which were isolated at 25 °C, and molecular compounds [Tb2Cd2(pfb)10(phen)2] (V) formed at 75 °C. The transition from a molecular to a polymer structure becomes possible because of intra- and intermolecular interactions between the aromatic cycles of phen and pfb from neighboring tetranuclear Ln2Cd2 fragments. Replacement of cadmium with zinc in the reaction resulted in molecular compounds Ln2Zn2 [Ln2Zn2(pfb)10(phen)2]·4MeCN (Ln = Eu (VI), Tb (VIII), Dy (IX)) and [Gd2Zn2(pfb)10(H2O)2(phen)2]·4MeCN (VII). A new molecular EuCd complex [Eu2Cd2(pfb)10(phen)4]·4MeCN (X)] was isolated from a mixture of cadmium, zinc, and europium pentafluorobenzoates (Cd:Zn:Ln = 1:1:2). Complexes II-IV, VII and IX exhibit magnetic relaxation at liquid helium temperatures in nonzero magnetic fields. Luminescent studies revealed a bright luminescence of complexes with europium(III) and terbium(III) ions

    Cadmium-Inspired Self-Polymerization of {LnIIICd2} Units: Structure, Magnetic and Photoluminescent Properties of Novel Trimethylacetate 1D-Polymers (Ln = Sm, Eu, Tb, Dy, Ho, Er, Yb)

    No full text
    A series of heterometallic carboxylate 1D polymers of the general formula [LnIIICd2(piv)7(H2O)2]n·nMeCN (LnIII = Sm (1), Eu (2), Tb (3), Dy (4), Ho (5), Er (6), Yb (7); piv = anion of trimethylacetic acid) was synthesized and structurally characterized. The use of CdII instead of ZnII under similar synthetic conditions resulted in the formation of 1D polymers, in contrast to molecular trinuclear complexes with LnIIIZn2 cores. All complexes 1–7 are isostructural. The luminescent emission and excitation spectra for 2–4 have been studied, the luminescence decay kinetics for 2 and 3 was measured. Magnetic properties of the complexes 3–5 and 7 have been studied; 4 and 7 exhibited the properties of field-induced single-molecule magnets in an applied external magnetic field. Magnetic properties of 4 and 7 were modelled using results of SA-CASSCF/SO-RASSI calculations and SINGLE_ANISO procedure. Based on the analysis of the magnetization relaxation and the results of ab initio calculations, it was found that relaxation in 4 predominantly occurred by the sum of the Raman and QTM mechanisms, and by the sum of the direct and Raman mechanisms in the case of 7

    Synthesis, Structure and Photoluminescence Properties of Cd and Cd-Ln Pentafluorobenzoates with 2,2′:6′,2′-Terpyridine Derivatives

    No full text
    Six new complexes [Cd(tpy)(pfb)2] (1, tpy = 2,2′:6′,2″-terpyridine), [Ln2Cd2(tpy)2(pfb)10] (Ln = Eu (2Eu), Tb (2Tb)), [Ln2Cd2(tbtpy)2(pfb)10]·2MeCN (Ln = Eu (3Eu), Tb (3Tb), tbtpy = 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine), [Eu2Cd2(tppz)(pfb)10]n (4, tppz = 2,3,5,6-tetra-(pyridin-2-yl)pyrazine) based on pentafluorobenzoic acid (Hpfb) have been prepared and investigated. The effect of tridentate ligands on geometry heterometallic scaffolds synthesized complexes is discussed. The supramolecular crystal structures of the new compounds are stabilized by π-π, C-F···π, C-H···O, C-H...F, F….F interactions. Non-covalent interactions have been studied using Hirschfeld surface analysis. The obtained compounds were characterized by single-crystal and powder X-ray diffraction, luminescence spectroscopy, IR spectroscopy, CHN analysis. Complexes 2Ln and 3Ln exhibit metal-centered photoluminescence, but the presence of ligand luminescence bands indicates incomplete energy transfer from the d-block to the lanthanide ion

    Effect of Non-Covalent Interactions on the 2,4- and 3,5-Dinitrobenzoate Eu-Cd Complex Structures

    No full text
    Heterometallic {Eu2Cd2} complexes [Eu2(NO3)2Cd2(Phen)2(2,4-Nbz)8]n·2nMeCN (I) and [Eu2(MeCN)2Cd2(Phen)2(3,5-Nbz)10] (II) with the 2,4-dinitrobenzoate (2,4-Nbz) and 3,5-dinitrobenzoate (3,5-Nbz) anions and 1,10-phenanthroline were synthesized. The compounds obtained were characterized by X-ray single-crystal analysis, powder X-ray diffraction analysis, IR spectroscopy, and elemental analysis. Moreover, the thermal stability of the complexes was also studied. Analysis of the crystal packing showed that where 1,10-phenanthroline is combined with various isomers of dinitrobenzoate anions, different arrangements of non-covalent interactions are observed in the complex structures. In the case of the compound with the 2,4-dinitrobenzoate anion, these interactions lead to a significant distortion of the metal core geometry and formation of a polymeric structure, while the complex with the 3,5-dinitrobenzoate anion has a structure that is typical of similar systems. The absence of europium metal-centered luminescence at 270 nm wavelength was shown. For all the reported compounds, a thermal stability study was carried out that showed that the compounds decomposed with a significant thermal effect

    Effect of Non-Covalent Interactions on the 2,4- and 3,5-Dinitrobenzoate Eu-Cd Complex Structures

    No full text
    Heterometallic {Eu2Cd2} complexes [Eu2(NO3)2Cd2(Phen)2(2,4-Nbz)8]n·2nMeCN (I) and [Eu2(MeCN)2Cd2(Phen)2(3,5-Nbz)10] (II) with the 2,4-dinitrobenzoate (2,4-Nbz) and 3,5-dinitrobenzoate (3,5-Nbz) anions and 1,10-phenanthroline were synthesized. The compounds obtained were characterized by X-ray single-crystal analysis, powder X-ray diffraction analysis, IR spectroscopy, and elemental analysis. Moreover, the thermal stability of the complexes was also studied. Analysis of the crystal packing showed that where 1,10-phenanthroline is combined with various isomers of dinitrobenzoate anions, different arrangements of non-covalent interactions are observed in the complex structures. In the case of the compound with the 2,4-dinitrobenzoate anion, these interactions lead to a significant distortion of the metal core geometry and formation of a polymeric structure, while the complex with the 3,5-dinitrobenzoate anion has a structure that is typical of similar systems. The absence of europium metal-centered luminescence at 270 nm wavelength was shown. For all the reported compounds, a thermal stability study was carried out that showed that the compounds decomposed with a significant thermal effect

    Current Design of Mixed-Ligand Complexes of Magnesium(II): Synthesis, Crystal Structure, Thermal Properties and Biological Activity against <i>Mycolicibacterium Smegmatis</i> and <i>Bacillus Kochii</i>

    No full text
    The interaction of Mg2+ with 2-furoic acid (HFur) and oligopyridines, depending on the synthesis conditions, leads to the formation of mixed-ligand complexes [Mg(H2O)4(phen)]·2HFur·phen·H2O (1), [Mg(NO3)2(phen)2] (2) and [Mg3(Fur)6(bpy)2]·3CH3CN (3); these structures were determined with an SC X-ray analysis. According to the X-ray diffraction data, in complex 1, obtained in ambient conditions, the magnesium cation coordinated four water molecules and one phenanthroline fragment, while in complexes 2 and 3 (synthesized in an inert atmosphere), the ligand environment of the complexing agent was represented by neutral oligopyridine molecules and acid anions. The thermal behavior of 1 and 2 was studied using a simultaneous thermal analysis (STA). The in vitro biological activity of complexes 1–3 was studied in relation to the non-pathogenic Mycolicibacterium smegmatis and the virulent strain Mycobacterium tuberculosis H37Rv

    Making Decisions in a Sustainable Development Context: A State-of-the-Art Survey and Proposal of a Multi-period Single Synthesizing Criterion Approach

    No full text
    corecore