25 research outputs found

    Effect of friction and clearance on kinematics and contact mechanics of dual mobility hip implant.

    Get PDF
    The dual mobility hip implant has been introduced recently and increasingly used in total hip replacement to maintain the stability and reduce the risk of post-surgery dislocation. However, the kinematics and contact mechanisms of dual mobility hip implants have not been investigated in detail in the literature. Therefore, finite element method was adopted in this study to investigate dynamics and contact mechanics of a typical metal-on-polymer dual mobility hip implant under different friction coefficient ratios between the inner and the outer articulations and clearances/interferences between the ultra-high-molecular-weight polyethylene liner and the metal back shell. A critical ratio of friction coefficients between the two pairs of contact interfaces was found to mainly determine the rotating surfaces. Furthermore, an initial clearance between the liner and the back shell facilitated the rotation of the liner while an initial interference prevented such a motion at the outer articulating interface. In addition, the contact area and the sliding distance at the outer articulating surface were markedly greater than those at the inner cup-head interface, potentially leading to extensive wear at the outer surface of the liner

    Patient and surgery related factors associated with fatigue type polyethylene wear on 49 PCA and DURACON retrievals at autopsy and revision

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyethylene wear is an important factor for longevity of total knee arthroplasty. Proven and suspicious factors causing wear can be grouped as material, patient and surgery related. There are more studies correlating design and/or biomaterial factors to in vivo wear than those to patient and surgery related factors. Many retrieval studies just include revision implants and therefore may not be representative. This study is aimed to correlate patient- and surgery- related factors to visual wear score by minimizing design influence and include both autopsy and revision implants. Comparison between the groups was expected to unmask patient and surgery-related factors responsible for wear.</p> <p>Methods</p> <p>The amount of joint side wear on polyethylene retrievals was measured using a modification of an established visual wear score. Fatigue type wear was defined as summation of the most severe wear modes of delamination, pitting and cracks. Analysis of patient and surgery related variables suspicious to cause wear included prospectively sampled patient activity which was measured by self reported walking capacity. Statistical analysis was done by univariate analysis of variance. Activity level and implantation time were merged to an index of use and correlated to the wear score.</p> <p>Results</p> <p>Wear score after comparable implantation time was significantly less in the autopsy group. Even so, fatigue type wear accounted for 84 and 93 % of total wear score on autopsy and revision implants respectively. A highly significant influence on wear score was found in time of implantation (p = 0.002), level of activity (p = 0.025) and inserts belonging to revision group (p = 0.006). No influence was found for the kind of patella replacement (p = 0.483). Body mass index and accuracy of component alignment had no significant influence on visual wear score. Fatigue-type wear in the medial compartment was closely correlated to the index of use in the autopsy (R<sup>2 </sup>= 0.383) and the revision group (R<sup>2 </sup>= 0.813).</p> <p>Conclusion</p> <p>The present study's finding of substantial fatigue type wear in both autopsy and revision retrievals supports the theory that polyethylene fatigue strength is generally exceeded in this type of prosthesis. Furthermore, this study correlated fatigue-type polyethylene wear to an index of use as calculated by activity over time. Future retrieval studies may use activity over time as an important patient related factor correlated to the visual wear score. When evaluating total knee arthroplasty routine follow up, the surgeon must think of substantial wear present even without major clinical signs.</p

    The influence of simulator input conditions on the wear of total knee replacements: an experimental and computational study

    Get PDF
    Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation

    The effect of insert conformity and material on total knee replacement wear

    Get PDF
    The mean average life is increasing; therefore, there is a need to increase the lifetime of the prostheses. To fulfil this requirement, new prosthetic designs and materials are being introduced. Two of the design parameters that may affect wear of total knee replacements, and hence the expected lifetime, are the insert conformity and material. Computational models have been used extensively for wear prediction and optimisation of artificial knee designs. The objective of the present study was to use a previously validated non-dimensional wear coefficient-based computational wear model to investigate the effect of insert conformity and material on the predicted wear in total knee replacements. Four different inserts (curved, lipped, partial flat and custom flat), with different conformity levels, were tested against the same femoral and under two different kinematic inputs (intermediate and high), with different levels of cross-shear. The insert bearing materials were either conventional or moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE). Wear predictions were validated against the experimental data from Leeds knee simulation tests. The predicted wear rates for the curved insert (most conformed) were more than three times those for the flat insert (least conformed). In addition, the computationally predicted average volumetric wear rates for moderately cross-linked UHMWPE bearings were less than half of their corresponding conventional UHMWPE bearings. Moreover, the wear of the moderately cross-linked UHMWPE was shown to be less dependent on the degree of cross-shear, compared to conventional UHMWPE. These results along with supporting experimental studies provide insight into the design variables, which may reduce wear in knee replacements

    Three-dimensional computed tomography analysis of non-osteoarthritic adult acetabular dysplasia

    Get PDF
    The original publication is available at springerlink.com authorObjective Little data exists on the original morphology of acetabular dysplasia obtained from patients without radiographic advanced osteoarthritic changes. The aim of this study was to investigate the distribution and degree of acetabular dysplasia in a large number of patients showing no advanced degenerative changes using three-dimensional computed tomography (3DCT). Materials and methods Eighty-four dysplastic hips in 55 consecutive patients were studied. All 84 hips were in pre- or early osteoarthritis without radiographic evidence of joint space narrowing, formation of osteophytes or cysts, or deformity of femoral heads. The mean age at the time of CT scan was 35 years (range 15–64 years). 3D images were reconstructed and analyzed using recent computer imaging software (INTAGE Realia and Volume Player). Deficiency types and degrees of acetabular dysplasia were precisely evaluated using these computer software. Results The average Harris hip score at CT scans was 82 points. Twenty-two hips (26%) were classified as anterior deficiency, 17 hips (20%) as posterior deficiency, and 45 hips (54%) as lateral deficiency. No significant difference was found in the Harris hip score among these groups. The analysis of various measurements indicated wide variations. There was a significant correlation between the Harris hip score and the acetabular coverage (p < 0.001). Conclusion Our results indicated wide variety of deficiency type and degree of acetabular dysplasia. Hips with greater acetabular coverage tended to have a higher Harris hip score
    corecore