168 research outputs found

    Predictive value of updating framingham risk scores with novel risk markers in the U.S. general population

    Get PDF
    Background: According to population-based cohort studies CT coronary calcium score (CTCS), carotid intima-media thickness (cIMT), high-sensitivity C- reactive protein (CRP), and ankle-brachial index (ABI) are promising novel risk markers for improving cardiovascular risk assessment. Their impact in the U.S. general population is however uncertain. Our aim was to estimate the predictive value of four novel cardiovascular risk markers for the U.S. general population. Methods and Findings: Risk profiles, CRP and ABI data of 3,736 asymptomatic subjects aged 40 or older from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 exam were used along with predicted CTCS and cIMT values. For each subject, we calculated 10-year cardiovascular risks with and without each risk marker. Event rates adjusted for competing risks were obtained by microsimulation. We assessed the impact of updated 10-year risk scores by reclassification and C-statistics. In the study population (mean age 56±11 years, 48% male), 70% (80%) were at low (<10%), 19% (14%) at intermediate (≥10-<20%), an

    3D Collagen Alignment Limits Protrusions to Enhance Breast Cancer Cell Persistence

    Get PDF
    Patients with mammographically dense breast tissue have a greatly increased risk of developing breast cancer. Dense breast tissue contains more stromal collagen, which contributes to increased matrix stiffness and alters normal cellular responses. Stromal collagen within and surrounding mammary tumors is frequently aligned and reoriented perpendicular to the tumor boundary. We have shown that aligned collagen predicts poor outcome in breast cancer patients, and postulate this is because it facilitates invasion by providing tracks on which cells migrate out of the tumor. However, the mechanisms by which alignment may promote migration are not understood. Here, we investigated the contribution of matrix stiffness and alignment to cell migration speed and persistence. Mechanical measurements of the stiffness of collagen matrices with varying density and alignment were compared with the results of a 3D microchannel alignment assay to quantify cell migration. We further interpreted the experimental results using a computational model of cell migration. We find that collagen alignment confers an increase in stiffness, but does not increase the speed of migrating cells. Instead, alignment enhances the efficiency of migration by increasing directional persistence and restricting protrusions along aligned fibers, resulting in a greater distance traveled. These results suggest that matrix topography, rather than stiffness, is the dominant feature by which an aligned matrix can enhance invasion through 3D collagen matrices

    Analysis of circulating tumour cells in early-stage uveal melanoma: Evaluation of tumour marker expression to increase capture

    Get PDF
    Background: The stratification of uveal melanoma (UM) patients into prognostic groups is critical for patient management and for directing patients towards clinical trials. Current classification is based on clinicopathological and molecular features of the tumour. Analysis of circulating tumour cells (CTCs) has been proposed as a tool to avoid invasive biopsy of the primary tumour. However, the clinical utility of such liquid biopsy depends on the detection rate of CTCs. Methods: The expression of melanoma, melanocyte, and stem cell markers was tested in a primary tissue microarray (TMA) and UM cell lines. Markers found to be highly expressed in primary UM were used to either immunomagnetically isolate or immunostain UM CTCs prior to treatment of the primary lesion. (3) Results: TMA and cell lines had heterogeneous expression of common melanoma, melanocyte, and stem cell markers. A multi-marker panel of immunomagnetic beads enabled isolation of CTCs in 37/43 (86%) patients with UM. Detection of three or more CTCs using the multi-marker panel, but not MCSP alone, was a significant predictor of shorter progression free (p = 0.040) and overall (p = 0.022) survival. Conclusions: The multi-marker immunomagnetic isolation protocol enabled the detection of CTCs in most primary UM patients. Overall, our results suggest that a multi-marker approach could be a powerful tool for CTC separation for non-invasive prognostication of UM

    The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium

    Get PDF
    Bacterial permeability family member A1 (BPIFA1), also known as short palate, lung, and nasal epithelium clone 1 (SPLUNC1), is a protein involved in the antiinflammatory response. The goal of this study was to determine whether BPIFA1 expression in asthmatic airways is regulated by genetic variations, altering epithelial responses to type 2 cytokines (e.g., IL-13). Nasal epithelial cells from patients with mild to severe asthma were collected from the National Heart, Lung. and Blood Institute Severe Asthma Research Program centers, genotyped for rs750064, and measured for BPIFA1. To determine the function of rs750064, cells were cultured at air-liquid interface and treated with 11-13 with or without recombinant human BPIFA1 (rhBPIFA1). Noncultured nasal cells with the rs750064 CC genotype had significantly less BPIFA1 mRNA expression than the CT and TT genotypes. Cultured CC versus CT and TT cells without stimulation maintained less BPIFA1 expression. With IL-13 treatment, CC genotype cells secreted more eotaxin-3 than CT and TT genotype cells. Also, rhBPIFA1 reduced IL-13-mediated eotaxin-3. BPIFA1 mRNA levels negatively correlated with serum IgE and fractional exhaled nitric oxide. Baseline FEV1% levels were lower in the asthma patients with the CC genotype (n = 1,016). Our data suggest that less BPIFA1 in asthma patients with the CC allele may predispose them to greater eosinophilic inflammation, which could be attenuated by rhBPIFA1 protein therapy.NIH/NHLBI [R01HL125128, U10HL109257, UL1TR00448, U10HL109168]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Targeted locus amplification to develop robust patient-specific assays for liquid biopsies in pediatric solid tumors

    Get PDF
    BACKGROUND: Liquid biopsies combine minimally invasive sample collection with sensitive detection of residual disease. Pediatric malignancies harbor tumor-driving copy number alterations or fusion genes, rather than recurrent point mutations. These regions contain tumor-specific DNA breakpoint sequences. We investigated the feasibility to use these breakpoints to design patient-specific markers to detect tumor-derived cell-free DNA (cfDNA) in plasma from patients with pediatric solid tumors. MATERIALS AND METHODS: Regions of interest (ROI) were identified through standard clinical diagnostic pipelines, using SNP array for CNAs, and FISH or RT-qPCR for fusion genes. Using targeted locus amplification (TLA) on tumor organoids grown from tumor material or targeted locus capture (TLC) on FFPE material, ROI-specific primers and probes were designed, which were used to design droplet digital PCR (ddPCR) assays. cfDNA from patient plasma at diagnosis and during therapy was analyzed. RESULTS: TLA was performed on material from 2 rhabdomyosarcoma, 1 Ewing sarcoma and 3 neuroblastoma. FFPE-TLC was performed on 8 neuroblastoma tumors. For all patients, at least one patient-specific ddPCR was successfully designed and in all diagnostic plasma samples the patient-specific markers were detected. In the rhabdomyosarcoma and Ewing sarcoma patients, all samples after start of therapy were negative. In neuroblastoma patients, presence of patient-specific markers in cfDNA tracked tumor burden, decreasing during induction therapy, disappearing at complete remission and re-appearing at relapse. CONCLUSION: We demonstrate the feasibility to determine tumor-specific breakpoints using TLA/TLC in different pediatric solid tumors and use these for analysis of cfDNA from plasma. Considering the high prevalence of CNAs and fusion genes in pediatric solid tumors, this approach holds great promise and deserves further study in a larger cohort with standardized plasma sampling protocols

    Targeted locus amplification to develop robust patient-specific assays for liquid biopsies in pediatric solid tumors

    Get PDF
    BackgroundLiquid biopsies combine minimally invasive sample collection with sensitive detection of residual disease. Pediatric malignancies harbor tumor-driving copy number alterations or fusion genes, rather than recurrent point mutations. These regions contain tumor-specific DNA breakpoint sequences. We investigated the feasibility to use these breakpoints to design patient-specific markers to detect tumor-derived cell-free DNA (cfDNA) in plasma from patients with pediatric solid tumors.Materials and methodsRegions of interest (ROI) were identified through standard clinical diagnostic pipelines, using SNP array for CNAs, and FISH or RT-qPCR for fusion genes. Using targeted locus amplification (TLA) on tumor organoids grown from tumor material or targeted locus capture (TLC) on FFPE material, ROI-specific primers and probes were designed, which were used to design droplet digital PCR (ddPCR) assays. cfDNA from patient plasma at diagnosis and during therapy was analyzed.ResultsTLA was performed on material from 2 rhabdomyosarcoma, 1 Ewing sarcoma and 3 neuroblastoma. FFPE-TLC was performed on 8 neuroblastoma tumors. For all patients, at least one patient-specific ddPCR was successfully designed and in all diagnostic plasma samples the patient-specific markers were detected. In the rhabdomyosarcoma and Ewing sarcoma patients, all samples after start of therapy were negative. In neuroblastoma patients, presence of patient-specific markers in cfDNA tracked tumor burden, decreasing during induction therapy, disappearing at complete remission and re-appearing at relapse.ConclusionWe demonstrate the feasibility to determine tumor-specific breakpoints using TLA/TLC in different pediatric solid tumors and use these for analysis of cfDNA from plasma. Considering the high prevalence of CNAs and fusion genes in pediatric solid tumors, this approach holds great promise and deserves further study in a larger cohort with standardized plasma sampling protocols
    corecore