13 research outputs found

    The in situ growth of CuO nanostructures on an ITO substrate and its application as a highly sensitive electrode for the electrochemical determination of N-acetyl-L-cysteine

    No full text
    This study describes the development of a new ITO-based electrode used for the electrochemical determination of N-acetyl-L-cysteine (NAC). The electrode system relies on in situ grown CuO nanostructures over the ITO substrate, which provide a relatively greater contact and enables effective electron facilitation during the electrocatalytic oxidation of NAC in an aqueous medium. In situ growth of the CuO nanostructures was achieved using a simple hydrothermal process with the application of succinic acid as an effective growth template. The grown layer of CuO possessed a dense population of highly ordered nanostructures with a high degree of structural uniformity. The study evaluates the potential of the newly developed ITO-based electrode against the bare GCE and an electrode modified via the direct deposition of the same CuO nanostructures synthesised under similar hydrothermal conditions. The electrochemical oxidation of NAC over the newly developed electrode demonstrated low-over potential value and good working linearity in the range from 0.01 to 0.28 mu M. The electrode system was found to be sensitive up to 1.2 x 10(-3) mu M (S/N = 3) with charge transfer co-efficient (alpha) and diffusion co-efficient (D) values of 0.65 and 1.62 x 10(-2) cm(2) s(-1), respectively. Moreover, the developed electrode system demonstrated excellent working capability when utilised for the determination of NAC from a pharmaceutical formulation obtained from a local pharmacy

    Highly sensitive electrochemical determination of captopril using CuO modified ITO electrode: the effect of in situ grown nanostructures over signal sensitivity

    No full text
    The study describes a new approach for the direct electro-oxidation of captopril (CAP) drug using a CuO modified ITO electrode. The modified ITO electrode consists of an in situ grown film which accommodates dense CuO nanostructures with morphological features similar to flowers. The in situ growth over the ITO substrate was achieved using a simple hydrothermal route with the assistance of malonic acid which acted as an effective growth template. The devised electrode was evaluated in reference to its slurry-derived counterpart which involved surface modification of GCE using a conventional approach (drop-casting). The competitive evaluation of the discussed electrodes against the electro-oxidation of CAP, provided significant evidence to support the importance of controlled nanostructure distribution over the electrode surface to achieve higher signal sensitivity and reproducibility. The devised ITO/CuO electrode was known to possess excellent sensing capability against CAP within the linear working range of 0.01 to 3.43 mu M with signal sensitivity down to 2 x 10(-3) mM. Moreover, the ITO/CuO was noted to exhibit high charge transfer co-efficient (a), diffusion coefficient (D) and rate constant values of 0.83, 9.28 x 10(-5) cm(2) s(-1) and 3.5 x 10(3) mol(-1) L s(-1) respectively. In addition, the successful usage of ITO/CuO for CAP determination from commercial tablets and human urine samples further indicated the practical workability of the proposed electrode system

    Sensitive Determination of 6-Thioguanine Using Caffeic Acid-functionalized Fe3O4 Nanoparticles as an Electrochemical Sensor

    No full text
    The study demonstrates the potential application of caffeic acid-functionalized magnetite nanoparticles (CA-Fe3O4 NPs) as an effective electrode modifying material for the electrochemical oxidation of the 6-thioguanine (6-TG) drug. The functionalized Fe3O4 NPs were prepared using simple wet-chemical methodology where the used caffeic acid acted simultaneously as growth controlling and functionalizing agent. The study discusses the influence of an effective functionalization on the signal sensitivity observed for the electro-oxidation of 6-TG over CA-Fe3O4 NPs in comparison to a glassy carbon electrode modified with bare and nicotinic acid (NA)-functionalized Fe3O4 NPs. The experiment results provided sufficient evidence to support the importance of favorable functionality to achieve higher signal sensitivity for the electro-oxidation of 6-TG. The presence of favorable interactions between the active functional moieties of caffeic acid and 6-TG synergized with the greater surface area of magnetic NPs produces a stable electro-oxidation signal within the working range of 0.01-0.23 mu M with sensitive up to 0.001 mu M. Additionally, the sensor showed the strong anti-interference potential against the common co-existing drug molecules such as benzoic acid, acetaminophen, epinephrine, norepinephrine, glucose, ascorbic acid and l-cysteine. In addition, the successful quantification of 6-TG from the commercial tablets obtained from local pharmacy further signified the practical capability of the discussed sensor

    In-situ engineered MXene-TiO2/BiVO4 hybrid as an efficient photoelectrochemical platform for sensitive detection of soluble CD44 proteins

    No full text
    Interfacial charge-carrier recombination is a bottle-neck issue restricting photoelectrochemical biosensors advancement in the wearable clinical electronics. In this study, we propose a simple approach to construct a highly efficient photoactive heterojunction capable of functioning as an active substrate in PEC biosensing of CD44 proteins. Taking the advantage of high photocatalytic activity of BiVO4, and biocompatible yet conductive 2D-Ti3C2Tx nanosheets, a workable heterojunction was constructed between in-situ formed TiO2 from the partially oxidized Ti3C2Tx and lysine functionalized BiVO4 (TiO2/MX-BiVO4). The interfacial arrangement was ideal for promoting fast charge transfer from photo-excited BiVO4 and TiO2 to Ti3C2Tx, constructing an energy level-cascade that permits minimal charge-carrier recombination besides robust photocatalytic redox activity. The PEC biosensor relies on the ligand-protein interaction, where hyaluronic acid was directly immobilized over TiO2/MX-BiVO4 based on the interactions between carboxyl of lysine and amino moieties of hyaluronic acid. The PEC biosensor response depends on the inhibition in the measured photo-oxidation current of mediator species, i. e., ascorbic acid after the addition of CD44 proteins. The superior photo-activity, and robust heterojunction arrangement, produced a sensitive signal capable of recognizing CD44 in the wide concentration window of 2.2 x 10(-4) ng mL(-1) to 3.2 ng niL(-1) with a low-detection limit of 1.4 x 10(-2) pg mL(-1). The strong interaction between lysine functionalized BiVO4 and hyaluronic acid enabled biosensor to exhibit robust antifouling characteristics towards similar proteins such as PSA and NSE. The quantification of CD44 protein from real-blood serum samples further confirmed the biosensor's reliability for clinical application

    In Situ Growth of CuWO4 Nanospheres over Graphene Oxide for Photoelectrochemical (PEC) Immunosensing of Clinical Biomarker

    No full text
    Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the photoelectrochemical (PEC) PCT immunosensing platform based on it situ grown photo-active CuWO4 nanospheres over reduced graphene oxide layers (CuWO4@rGO). The in situ growth strategy enabled the formation of small nanospheres (diameter of 200 nm), primarily composed of tiny self-assembled CuWO4 nanoparticles (2-5 nm). The synergic coupling of CuWO4 with rGO layers constructed an excellent photo-active heterojunction for photoelectrochemical (PEC) sensing. The platform was then considered for electrocatalytic (EC) mechanism-based detection of PCT, where inhibition of the photocatalytic oxidation signal of ascorbic acid (AA), subsequent to the antibody-antigen interaction, was recorded as the primary signal response. This inhibition detection approach enabled sensitive detection of PCT in a concentration range of 10 pgmL(-1) to 50 ng.mL(-1) with signal sensitivity achievable up to 0.15 pgmL(-1). The proposed PEC hybrid (CuWO4@rGO) could further be engineered to detect other clinically important species.Funding Agencies|National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China [51572011, 51802012]</p

    Tartaric acid assisted in-situ growth of CuO nanostructures over ITO substrate for the electrocatalytic detection of Sudan I

    No full text
    The study explores the potential of newly developed ITO based electrode for the electro-catalytic detection of Sudan I. The ITO based electrode utilizes a dense layer of 2D CuO nanostructures as an effective electron-transfer facilitator which promotes the electro-catalytic sensing of Sudan I in aqueous solution. The in-situ growth of CuO nanostructures was achieved using simple hydrothermal route with the assistance of tartaric acid utilized as an effective template. The in-situ grown layer comprises of 2D CuO nanostructures with morphological features similar to flowers composed of sharp-flake like features. The electro-catalytic oxidation of Sudan I over the described electrode system demonstrated low-over potential value and excellent working stability with good analytical linearity in the range of 0.001-1.56 mu M. The ITO based electrode was found highly selective and sensitive towards Sudan I with limit of detection determined to be 1.2 x 10(-4) mu M (S/N = 3)

    Acetylsalicylic acid assisted hydrothermal growth of NiO, CuO and Co3O4 nanostructures and their application in the electro-catalytic determination of nalbuphine hydrochloride

    No full text
    This study describes the hydrothermal synthesis of NiO, CuO and Co3O4 nanostructures using acetylsalicylic acid (ASA) as a growth-controlling/directing agent. The as-synthesised nanostructures were shown to possess unique structural features and distinct morphologies, portraying the efficiency of ASA as a suitable growth modifier. The formed metal oxide nanostructures, when used for electrode modification purposes, exhibited excellent electrocatalytic capabilities against the oxidation of nelbuphine hydrochloride (NAL) in aqueous buffer solution. The modified electrodes exhibited distinct electrochemical characteristics, with CuO-based electrodes exhibiting a superior signal sensitivity and lower over-potential value compared to the NiO and Co3O4 nanostructures. The study further explores the variation in the observed electro-catalytic oxidation signal referenced to the distinct morphologies of the metal oxides nanostructures. The CuO-based electrode was selected for the sensitive quantification of NAL in aqueous solution over the linear range 0.001-2.25 mu M. The electrode demonstrated excellent working linearity, with signal sensitivity achieved down to 1 x 10(-4) mu M. Moreover, the successful quantification of NAL in complex matrices, such as human urine and clinical waste water, further reflected the analytical capability of the proposed sensor
    corecore