174 research outputs found
Modal Filtering for Control of Flexible Aircraft
Modal regulators and deformation trackers are designed for an open-loop fluttering wing model. The regulators are designed with modal coordinate and accelerometer inputs respectively. The modal coordinates are estimated with simulated fiber optics. The robust stability of the closed-loop systems is compared in a structured singular-value vector analysis. Performance is evaluated and compared in a gust alleviation and flutter suppression simulation. For the same wing and flight condition two wing-shape-tracking control architectures are presented, which achieve deformation control at any point on the wing
Black carbon contributes to organic matter in young soils in the Morteratsch proglacial area (Switzerland)
Most glacier forefields of the European Alps are being progressively exposed since the glaciers reached their maximum expansion in the 1850s. Global warming and climate changes additionally promote the exposure of sediments in previously glaciated areas. In these proglacial areas, initial soils have started to develop so that they may offer a continuous chronosequence from 0 to 150-yr-old soils.
The build-up of organic matter is an important factor of soil formation, and not only autochthonous but also distant sources might contribute to its accumulation in young soils and surfaces of glacier forefields. Only little is known about black carbon in soils that develop in glacier forefields, although charred organic matter could be an important component of organic carbon in Alpine soils.
The aim of our study was to examine whether black carbon (BC) is present in the initial soils of a proglacial area, and to estimate its relative contribution to soil organic matter. We investigated soil samples from 35 sites distributed over the whole proglacial area of Morteratsch (Upper Engadine, Switzerland), covering a chronosequence from 0 to 150 yr. BC concentrations were determined in fine earth using the benzene polycarboxylic acid (BPCA) marker method. We found that charred organic matter occurred in the whole area, and that it was a main compound of soil organic matter in the youngest soils, where total Corg concentrations were very low. The absolute concentrations of BC in fine earth were generally low but increased in soils that had been exposed for more than 40 yr. Specific initial microbial communities may profit from this additional C source during the first years of soil evolution and potentially promote soil development in its early stage
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust
Le api svelano il mistero delle fonti di emissione di particolato inquinante
Si tratta di una ricerca che è durata due anni, ed è stata pubblicata sul numero di luglio 2015 della Rivista scientifica internazionale Plos One. Gli autori: Ilaria Negri, Marco Pellecchia (Koiné - Consulenze Ambientali S.n.c., Parma, Italy), Christian Mavris (Department of Earth Sciences, Natural History Museum, London, United Kingdom), Gennaro Di Prisco, Emilio Caprio (Dipartimento di Agraria, Laboratorio di Entomologia E. Tremblay, Università degli Studi di Napoli Federico II, Portici - Napoli). Nello studio scientifico i ricercatori dimostrano che le api si comportano anche come “campionatori” attivi di particolato atmosferico, i cosiddetti
PM (dall’inglese “Particulate Matter”), di cui sono ricche le nostre città come troppo spesso avvertono i dati dell’Agenzia Regionale di Protezione dell’Ambiente (ARPA). Dice che l’Iglesiente (Iglesias, Sardegna) è inquinato, fortemente contaminato da metalli pesanti come il piombo e il bario. E svela poi che la salute di chi ci vive potrebbe essere compromessa, se non lo è già, anche dall’alta concentrazione di ferro, silicio e alluminio. Rivela ancora, con scientifica precisione, da dove provengono le micro particelle di queste impercettibilissime polveri: dalle miniere dell’Iglesiente e dalle industrie di Portovesm
Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter
© 2015 Negri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [CC by 4.0] The attached file is the published version of the article
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust
NASA Multidisciplinary Design and Analysis Fellowship Program
This report summarizes the results of a multi-year training grant for the development and implementation of a Multidisciplinary Design and Analysis (MDA) Fellowship Program at Georgia Tech. The Program funded the creation of graduate MS and PhD degree programs in aerospace systems design, analysis and integration. It also provided prestigious Fellowships with associated Industry Internships for outstanding engineering students. The graduate program has become the foundation for a vigorous and productive research effort and has produced: 20 MS degrees, 7 Ph.D. degrees, and has contributed to 9 ongoing Ph.D. students. The results of the research are documented in 32 publications (23 of which are included on a companion CDROM) and 4 annual student design reports (included on a companion CDROM). The legacy of this critical funding is the Center for Aerospace Systems Analysis at Georgia Tech which is continuing the graduate program, the research, and the industry internships established by this grant
Robust Design for Aeroelastically Tailored/Active Aeroelastic Wing
Presented at the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, September 2-4, 1998.A study of multidisciplinary design concerning the incorporation of aeroelastic tailoring, control surface blending, and active aeroelastic wing concepts is presented. The design process incorporates response surfaces, fast probability integration and modal-basis multidisciplinary design optimization to characterize the design space. The wing box skins of a representative fighter configuration with multiple wing control surfaces are sized to minimum weight. A design of experiments approach is developed for the gear ratios in control surface blending. Design optimization is conducted for each set of gearing functions. The control surface gear ratios are then treated as noise in the structural design process, and a robust structural design is sought to account for the change in control laws that historically occur during the aircraft design process. The motivation for this methodology investigation is derived from the common occurrence of control law changes throughout the lifetime of an aircraft
Emergency Planning for Aerial Vehicles by Approximating Risk with Aerial Imagery and Geographic Data
Presented at the AIAA SCITECH 2022 ForumUrban Air Mobility and Advanced Air Mobility require the certification of novel electrified, vertical takeoff and landing, and autonomous aerial vehicles. These vehicles will operate at lower altitudes, in more dense environments, and with limited recovery abilities. Therefore, emergency landing scenarios must be considered broadly to understand the risks in some situations of flight failures. This work provides a preflight planning tool to assist these vehicles when emergency landing is required in crowded environments by fusing geographic data about the population, geometric data from lidar scans, and semantic data about land cover from aerial imagery. The Pix2Pix Conditional GAN is trained on Washington D.C. datasets to predict eight classifications at a 1m resolution. The information from this detection phase is transformed into a costmap, or riskmap, to use in planning the path to the safest landing locations. Multiple combinations of the cost layers are investigated in three test scenarios. The Rapidly Exploring Random Tree (RRT) algorithm efficiently searches for an alternative path that minimizes risk during emergency landing. The tool is demonstrated through three scenarios in the D.C. area. The objective is that the tool allows for the safe operation of UAM and AAM vehicles through crowded regions by providing confidence to the local population and federal regulators
- …