18 research outputs found

    Accessing Structural, Electronic, Transport and Mesoscale Properties of Li-GICs via a Complete DFTB Model with Machine-Learned Repulsion Potential

    Get PDF
    Lithium-graphite intercalation compounds (Li-GICs) are the most popular anode material for modern lithium-ion batteries and have been subject to numerous studies—both experimental and theoretical. However, the system is still far from being consistently understood in detail across the full range of state of charge (SOC). The performance of approaches based on density functional theory (DFT) varies greatly depending on the choice of functional, and their computational cost is far too high for the large supercells necessary to study dilute and non-equilibrium configurations which are of paramount importance for understanding a complete charging cycle. On the other hand, cheap machine learning methods have made some progress in predicting, e.g., formation energetics, but fail to provide the full picture, including electrostatics and migration barriers. Following up on our previous work, we deliver on the promise of providing a complete and affordable simulation framework for Li-GICs. It is based on density functional tight binding (DFTB), which is fitted to dispersion-corrected DFT data using Gaussian process regression (GPR). In this work, we added the previously neglected lithium–lithium repulsion potential and extend the training set to include superdense Li-GICs (LiC6−x; x>0) and lithium metal, allowing for the investigation of dendrite formation, next-generation modified GIC anodes, and non-equilibrium states during fast charging processes in the future. For an extended range of structural and energetic properties—layer spacing, bond lengths, formation energies and migration barriers—our method compares favorably with experimental results and with state-of-the-art dispersion-corrected DFT at a fraction of the computational cost. We make use of this by investigating some larger-scale system properties—long range Li–Li interactions, dielectric constants and domain-formation—proving our method’s capability to bring to light new insights into the Li-GIC system and bridge the gap between DFT and meso-scale methods such as cluster expansions and kinetic Monte Carlo simulations

    Amelogenin Peptide Extract Increases Differentiation and Angiogenic and Local Factor Production and Inhibits Apoptosis in Human Osteoblasts

    Get PDF
    Enamel matrix derivative (EMD), a decellularized porcine extracellular matrix (ECM), is used clinically in periodontal tissue regeneration. Amelogenin, EMD’s principal component, spontaneously assembles into nanospheres in vivo, forming an ECM complex that releases proteolytically cleaved peptides. However, the role of amelogenin or amelogenin peptides in mediating osteoblast response to EMD is not clear. Human MG63 osteoblast-like cells or normal human osteoblasts were treated with recombinant human amelogenin or a 5 kDa tyrosine-rich amelogenin peptide (TRAP) isolated from EMD and the effect on osteogenesis, local factor production, and apoptosis assessed. Treated MG63 cells increased alkaline phosphatase specific activity and levels of osteocalcin, osteoprotegerin, prostaglandin E2, and active/latent TGF-β1, an effect sensitive to the effector and concentration. Primary osteoblasts exhibited similar, but less robust, effects. TRAP-rich 5 kDa peptides yielded more mineralization than rhAmelogenin in osteoblasts in vitro. Both amelogenin and 5 kDa peptides protected MG63s from chelerythrine-induced apoptosis. The data suggest that the 5 kDa TRAP-rich sequence is an active amelogenin peptide that regulates osteoblast differentiation and local factor production and prevents osteoblast apoptosis

    Premature Osteoblast Clustering by Enamel Matrix Proteins Induces Osteoblast Differentiation through Up-Regulation of Connexin 43 and N-Cadherin

    Get PDF
    In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo

    Cell-seeded polyurethane-fibrin structures--a possible system for intervertebral disc regeneration

    Get PDF
    Nowadays, intervertebral disc (IVD) degeneration is one of the principal causes of low back pain involving high expense within the health care system. The long-term goal is the development of a medical treatment modality focused on a more biological regeneration of the inner nucleus pulposus (NP). Hence, interest in the endoscopic implantation of an injectable material took center stage in the recent past. We report on the development of a novel polyurethane (PU) scaffold as a mechanically stable carrier system for the reimplantation of expanded autologous IVD-derived cells (disc cells) to stimulate regenerative processes and restore the chondrocyte-like tissue within the NP. Primary human disc cells were seeded into newly developed PU spheroids which were subsequently encapsulated in fibrin hydrogel. The study aims to analyze adhesion properties, proliferation capacity and phenotypic characterization of these cells. Polymerase chain reaction was carried out to detect the expression of genes specifically expressed by native IVD cells. Biochemical analyses showed an increased DNA content, and a progressive enhancement of total collagen and glycosaminoglycans (GAG) was observed during cell culture. The results suggest the synthesis of an appropriate extracellular matrix as well as a stable mRNA expression of chondrogenic and/or NP specific markers. In conclusion, the data presented indicate an alternative medical approach to current treatment options of degenerated IVD tissue

    EMD significantly increases mineral deposition as assessed through von Kossa staining.

    No full text
    <p>At time points 5, 7, 10 and 14 days, primary human osteoblasts were fixed and stained with silver nitrate to determine patterns of mineralization. A) EMD significantly increased mineralization in clustered regions 5 days post seeding. At 10 and 14 days post seeding, areas of mineralization for EMD-coated samples were enlarged when compared to control samples (A) (bar = 1000 µm). 10 fields of view per sample were captured and percentage area of staining was quantified (B). At all time points, EMD significantly increased von Kossa staining. Furthermore, significant increases in nodule size were also observed at all time points (C). Data represent means ± SE (results from 3 independent experiments).</p

    EMD promotes expression of connexin 43 and N-cadherin in cell clusters.

    No full text
    <p>At time point 5 days post seeding, primary human osteoblasts were stained for connexin 43 or N-cadherin (red), and nuclei (blue). Expression of connexin 43 and N-cadherin significantly increased on cell membranes of EMD coated samples. (bar = 50 µm).</p

    EMD increases osteoblast mRNA and protein levels of connexin 43 and N-cadherin.

    No full text
    <p>After 2, 3, 5, 7 and 10 days post seeding, mRNA was extracted and realtime PCR was performed using specific primers for connexin 43 (A) and N-cadherin (B). When samples were pre-coated with EMD, up to 4 fold increases in gene expression were observed for connexin 43 at 2, 3 and 5 days post seeding (A). 3 fold increases in gene expression of N-cadherin were also observed (B). Additional samples were extracted for western blot analysis (C). Elevated levels of both connexin 43 and N-cadherin were observed at 2, 3, 5 and 7 days post seeding. * denotes significant difference between EMD treated sample and respective control sample (p<0.05). Data shown is the average value from 3 independent experiments (3 replicates per experiment) ± SE.</p
    corecore