120 research outputs found
Recommended from our members
A Protocol for Space Charge Measurements in Full-size HVDC Extruded Cables
This position paper, prepared by the IEEE DEIS HVDC Cable Systems Technical Committee, illustrates a protocol recommended for the measurement of space charges in full-size HVDC extruded cables during load cycle qualification tests (either prequalification load cycles or type test load cycles). The protocol accounts for the experimental practices of space charge measurements in the thick insulation of coaxial cables in terms of poling time, depolarization time, heating and cooling of specimens, as well as for the experience gained very recently from such kind of measurements performed in the framework of qualification tests relevant to ongoing HVDC cable system projects. The goal of the protocol is not checking the compliance with any maximum acceptable limit of either space charge or electric field. Rather, this protocol aims at assessing the variation of the electric field profile in the cable insulation wall during poling time at the beginning and at the end of load cycle qualification tests for full-size HVDC extruded cables. Indeed, in the design stage the electric field distributions are determined by the cable geometry and by temperature gradient in the insulation. Thus, the design is based on macroscopic parameters conductivity and permittivity and how they depend upon temperature. Any disturbance of the electric field due to space charge accumulation will only be revealed during space charge measurements either in as-manufactured state or in the aged state after load cycle qualification tests
Recommended from our members
The Insulation of HVDC Extruded Cable System Joints. Part 2: Proposal of a New AC Voltage PD Measurement Protocol for Quality Control during Routine Tests
The review of materials, design and testing of joints for HVDC extruded cable systems provided in previous Part 1 paved the way to this Part 2 position paper by the DEIS HVDC Cable Systems Technical Committee, whose aim is to remedy the scarcity of existing standardized tests on joints. After a sound analysis, here routine tests are identified as the first practical target for the onset of new testing procedures, AC-PD measurements as the readily-available measurement from manufacturersâ experience for quality control of joints during routine tests and VHF/UHF wireless sensors as the best tool for such measurements in the noisy environment of factories. Thereby, a novel protocol for PD measurement using AC voltages and VHF/UHF electromagnetic sensors, for quality control during routine tests on HVDC extruded joints, is proposed
The Insulation of HVDC Extruded Cable System Joints. Part 1: Review of Materials, Design and Testing Procedures
This position paper by the DEIS HVDC Cable Systems Technical Committee provides a review of existing diagnostic electrical and dielectric techniques for testing the insulation of polymeric extruded HVDC cable joints in the present Part 1. Here, the state of the art on the insulation of HVDC extruded cable system joints is covered with reference to types, design and testing techniques. This helps to identify routine tests as the first target for the onset of new testing procedures, AC-PD measurements as the readily-available measurement from manufacturers' practices for quality control of the insulation of accessories during routine tests and VHF/UHF wireless sensors as the best tool for performing such measurements on joints in the noisy factory environment. Thereby, a novel protocol for the measurement of partial discharges using AC voltages and VHF/UHF sensors, for quality control during routine tests on such joints, is derived in the next Part 2. This protocol is the main novelty of this investigation
Osmosis in a minimal model system
Osmosis plays a central role in the function of living and soft matter
systems. While the thermodynamics of osmosis is well understood, the underlying
microscopic dynamical mechanisms remain the subject of discussion. Unraveling
these mechanisms is a crucial prerequisite for eventually understanding osmosis
in non-equilibrium systems. Here, we investigate the microscopic basis of
osmosis, in a system at equilibrium, using molecular dynamics simulations of a
minimal model in which repulsive solute and solvent particles differ only in
their interactions with an external potential. For this system, we can derive a
simple virial-like relation for the osmotic pressure. Our simulations support
an intuitive picture in which the solvent concentration gradient, at osmotic
equilibrium, arises from the balance between an outward force, caused by the
increased total density in the solution, and an inward diffusive flux caused by
the decreased solvent density in the solution. While more complex effects may
occur in other osmotic systems, they are not required for a description of the
basic physics of osmosis in this minimal model.Comment: 10 pages, 8 figure
Recommended from our members
Feasibility of Space Charge Measurements on HVDC Cable Joints
This review article aims at illustrating the starting of the activities carried out by the Study Group from the viewpoint of the assessment of the state of the art in the measurement of SC in HVDC extruded cable system joints
- âŠ