120 research outputs found

    The Insulation of HVDC Extruded Cable System Joints. Part 1: Review of Materials, Design and Testing Procedures

    Get PDF
    This position paper by the DEIS HVDC Cable Systems Technical Committee provides a review of existing diagnostic electrical and dielectric techniques for testing the insulation of polymeric extruded HVDC cable joints in the present Part 1. Here, the state of the art on the insulation of HVDC extruded cable system joints is covered with reference to types, design and testing techniques. This helps to identify routine tests as the first target for the onset of new testing procedures, AC-PD measurements as the readily-available measurement from manufacturers' practices for quality control of the insulation of accessories during routine tests and VHF/UHF wireless sensors as the best tool for performing such measurements on joints in the noisy factory environment. Thereby, a novel protocol for the measurement of partial discharges using AC voltages and VHF/UHF sensors, for quality control during routine tests on such joints, is derived in the next Part 2. This protocol is the main novelty of this investigation

    Osmosis in a minimal model system

    Full text link
    Osmosis plays a central role in the function of living and soft matter systems. While the thermodynamics of osmosis is well understood, the underlying microscopic dynamical mechanisms remain the subject of discussion. Unraveling these mechanisms is a crucial prerequisite for eventually understanding osmosis in non-equilibrium systems. Here, we investigate the microscopic basis of osmosis, in a system at equilibrium, using molecular dynamics simulations of a minimal model in which repulsive solute and solvent particles differ only in their interactions with an external potential. For this system, we can derive a simple virial-like relation for the osmotic pressure. Our simulations support an intuitive picture in which the solvent concentration gradient, at osmotic equilibrium, arises from the balance between an outward force, caused by the increased total density in the solution, and an inward diffusive flux caused by the decreased solvent density in the solution. While more complex effects may occur in other osmotic systems, they are not required for a description of the basic physics of osmosis in this minimal model.Comment: 10 pages, 8 figure
    • 

    corecore