545 research outputs found

    Use of microwave remote sensing data to monitor spatio temporal characteristics of surface soil moisture at local and regional scales

    Get PDF
    Hydrologic processes, such as runoff production or evapotranspiration, largely depend on the variation of soil moisture and its spatial pattern. The interaction of electromagnetic waves with the land surface can be dependant on the water content of the uppermost soil layer. Especially in the microwave domain of the electromagnetic spectrum, this is the case. New sensors as e.g. ENVISAT ASAR, allow for frequent, synoptically and homogeneous image acquisitions over larger areas. Parameter inversion models are therefore developed to derive bio- and geophysical parameters from the image products. The paper presents a soil moisture inversion model for ENVISAT ASAR data for local and regional scale applications. The model is validated against in situ soil moisture measurements. The various sources of uncertainties, being related to the inversion process are assessed and quantified

    Modelling floods in the Ammer catchment: limitations and challenges with a coupled meteo-hydrological model approach

    No full text
    International audienceNumerous applications of hydrological models have shown their capability to simulate hydrological processes with a reasonable degree of certainty. For flood modelling, the quality of precipitation data ? the key input parameter ? is very important but often remains questionable. This paper presents a critical review of experience in the EU-funded RAPHAEL project. Different meteorological data sources were evaluated to assess their applicability for flood modelling and forecasting in the Bavarian pre-alpine catchment of the Ammer river (709 km2), for which the hydrological aspects of runoff production are described as well as the complex nature of floods. Apart from conventional rain gauge data, forecasts from several Numerical Weather Prediction Models (NWP) as well as rain radar data are examined, scaled and applied within the framework of a GIS-structured and physically based hydrological model. Multi-scenario results are compared and analysed. The synergetic approach leads to promising results under certain meteorological conditions but emphasises various drawbacks. At present, NWPs are the only source of rainfall forecasts (up to 96 hours) with large spatial coverage and high temporal resolution. On the other hand, the coarse spatial resolution of NWP grids cannot yet address, adequately, the heterogeneous structures of orographic rainfields in complex convective situations; hence, a major downscaling problem for mountain catchment applications is introduced. As shown for two selected Ammer flood events, a high variability in prediction accuracy has still to be accepted at present. Sensitivity analysis of both meteo-data input and hydrological model performance in terms of process description are discussed and positive conclusions have been drawn for future applications of an advanced meteo-hydro model synergy.</p

    Application of recombinant TAF3 PHD domain instead of anti-H3K4me3 antibody

    No full text
    BACKGROUND: Histone posttranslational modifications (PTMs) represent a focal point of chromatin regulation. The genome-wide and locus-specific distribution and the presence of distinct histone PTMs is most commonly examined with the application of histone PTM-specific antibodies. In spite of their central role in chromatin research, polyclonal antibodies suffer from disadvantages like batch-to-batch variability and insufficient documentation of their quality and specificity. RESULTS: To mitigate some of the pitfalls of using polyclonal antibodies against H3K4me3, we successfully validated the application of a recombinant TAF3 PHD domain as anti-H3K4me3 affinity reagent in peptide array, western blot and ChIP-like experiments coupled with qPCR and deep sequencing. CONCLUSIONS: The successful addition of the TAF3 PHD domain to the growing catalog of recombinant affinity reagents for histone PTMs could help to improve the reproducibility, interpretation and cross-laboratory validation of chromatin data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13072-016-0061-9) contains supplementary material, which is available to authorized users

    New measure of electron correlation

    Full text link
    We propose to quantify the "correlation" inherent in a many-electron (or many-fermion) wavefunction by comparing it to the unique uncorrelated state that has the same single-particle density operator as it does.Comment: Final version to appear in PR

    Modelling catchment hydrology within a GIS based SVAT-model framework

    No full text
    International audienceThe physically-based soil-vegetation-atmosphere-transfer model PROMET (PRocess-Oriented Model for Evapo Transpiration) developed at the Institute of Geography, University of Munich, is applied to the Ammer basin (approx. 600 km2 ) in the alpine foreland of Germany. The hourly actual evapotranspiration rate is calculated for a 14-year time series. A rainfall-runoff model, based on an enhanced distributed TOPMODEL structure, is linked to the SVAT-model in order to provide a hydrological model covering the water-cycle at the basin scale in a 30m-resolution. The model is driven with meteorological data taken from regular synoptic stations of the German Weather Service. Soil physical and plant physiological parameters for the SVAT model were either measured at the test site or taken from literature. The topographical parameters were derived from detailed digital terrain analysis. The study intends to combine, within a GIS-based model framework, the understanding and application of physical processes inherent in the basin such as the spatial distribution and temporal evolution of evapotranspiration and runoff patterns. The influence of an evapotranspiration coefficient ETcoeff, implemented in the formulation of the soil-topographic-index, to account for seasonal dynamics in distributed runoff formation due to the annual course of vegetation activity is investigated. The SVAT model shows convincing results in the long-term water balance description with a mean annual deviation of less then 6% over a fourteen year time period. Introducing the evapotranspiration-soil-topographic-index ?ET leads to a considerable improvement; the runoff model component simulating the daily runoff over the year reaches an efficiency of ? = 0.92. Keywords: Water cycle; Geographic Information System; SVAT; TOPMODEL</p
    • …
    corecore