138 research outputs found

    Alpha-1 antitrypsin deficiency impairs lung antibacterial immunity in mice

    Get PDF
    Alpha-1 antitrypsin (AAT) is a major inhibitor of serine proteases in mammals. Therefore, its deficiency leads to protease-antiprotease imbalance and a risk for developing lung emphysema. Although therapy with human plasma-purified AAT attenuates AAT deficiency-related emphysema, its impact on lung antibacterial immunity is poorly defined. Here, we examined the effect of AAT therapy on lung protective immunity in AAT-deficient (KO) mice challenged with Streptococcus pneumoniae. AAT-KO mice were highly susceptible to S. pneumoniae, as determined by severe lobar pneumonia and early mortality. Mechanistically, we found that neutrophil-derived elastase (NE) degraded the opsonophagocytically important collectins, surfactant protein A (SP-A) and D (SP-D), which was accompanied by significantly impaired lung bacterial clearance in S. pneumoniae-infected AAT-KO mice. Treatment of S. pneumoniae-infected AAT-KO mice with human AAT protected SP-A and SP-D from NE-mediated degradation and corrected the pulmonary pathology observed in these mice. Likewise, treatment with Sivelestat, a specific inhibitor of NE, also protected collectins from degradation and significantly decreased bacterial loads in S. pneumoniae-infected AAT-KO mice. Our findings show that NE is responsible for the degradation of lung SP-A and SP-D in AAT-KO mice affecting lung protective immunity in AAT deficiency

    Gas Phase Reaction of Silane with Water at Different Temperatures and Supported by Plasma

    Get PDF
    The interaction of silane and water is discussed controversially in literature: some authors suggest monosilane and water react kinetically and sufficiently fast enough to remove water, while others state the reaction occurs only at elevated temperatures. This question is of technological interest for the removal of unavoidable water residues in Ar gases. Thermodynamic calculations show that virtually complete removal of water is expected with superstoichiometric silane addition. However, mass spectrometric and infrared spectroscopic experiments give evidence that the addition of monosilane to such an Ar gas at room temperature is unable to remove residual water, which disagrees with some current hypotheses in the literature. This holds even for very high SiH4 concentrations up to 2 vol.-%. Silane reacts with water above temperatures of 555 °C, initiated by the thermal decomposition of silane. A cold dielectric barrier discharge-plasma used for silane and water dissociation enhances reactivity similar to elevated temperatures. Fourier-transformed infrared spectroscopy points toward silanol generation at temperatures between 400 and 550 °C, while quadrupole mass spectrometry indicates the creation of SiOH+, SiHOH+, SiH2OH+, and SiH3OH+. Cold plasmas generate smaller amounts of SiOH+, SiHOH+, and SiH2OH+ compared to elevated temperatures. Reaction products are hydrogen and nanoscaled particles of non-stoichiometric silicon oxides. The silicon-oxide particles produced differ in elemental composition and shape depending on the prevailing water content during decomposition: SiOx generated with residual water appears with relatively smooth surfaces, while the addition of water supports the formation of significantly rougher particle surfaces. Higher initial water contents correlate with higher oxygen contents of the particles

    A comparison of curated gene sets versus transcriptomics-derived gene signatures for detecting pathway activation in immune cells

    Get PDF
    Background: Despite the significant contribution of transcriptomics to the fields of biological and biomedical research, interpreting long lists of significantly differentially expressed genes remains a challenging step in the analysis process. Gene set enrichment analysis is a standard approach for summarizing differentially expressed genes into pathways or other gene groupings. Here, we explore an alternative approach to utilizing gene sets from curated databases. We examine the method of deriving custom gene sets which may be relevant to a given experiment using reference data sets from previous transcriptomics studies. We call these data-derived gene sets, "gene signatures" for the biological process tested in the previous study. We focus on the feasibility of this approach in analyzing immune-related processes, which are complicated in their nature but play an important role in the medical research. Results: We evaluate several statistical approaches to detecting the activity of a gene signature in a target data set. We compare the performance of the data-derived gene signature approach with comparable GO term gene sets across all of the statistical tests. A total of 61 differential expression comparisons generated from 26 transcriptome experiments were included in the analysis. These experiments covered eight immunological processes in eight types of leukocytes. The data-derived signatures were used to detect the presence of immunological processes in the test data with modest accuracy (AUC = 0.67). The performance for GO and literature based gene sets was worse (AUC = 0.59). Both approaches were plagued by poor specificity. Conclusions: When investigators seek to test specific hypotheses, the data-derived signature approach can perform as well, if not better than standard gene-set based approaches for immunological signatures. Furthermore, the data-derived signatures can be generated in the cases that well-defined gene sets are lacking from pathway databases and also offer the opportunity for defining signatures in a cell-type specific manner. However, neither the data-derived signatures nor standard gene-sets can be demonstrated to reliably provide negative predictions for negative cases. We conclude that the data-derived signature approach is a useful and sometimes necessary tool, but analysts should be weary of false positives. © 2020 The Author(s)

    Очистка сточных вод от тяжелых металлов природными сорбентами

    Get PDF
    Использование отходов подсолнечной лузги позволяет комплексно решить проблему утилизации сельскохозяйственных отходов и получения хемосорбента для очистки сточных вод промышленного производства от ионов тяжелых металлов. Проведены исследования по оценке адсорбционной способности материалов, определены кинетические зависимости процесса.The use of sunflower husk waste allows to solve the problem of utilization of agricultural waste and obtaining chemisorbent for wastewater treatment of industrial production from ions of heavy metals. Studies on the evaluation of the adsorption capacity of materials have been carried out, the kinetic dependencies of the process

    S100A9 is indispensable for survival of pneumococcal pneumonia in mice

    Full text link
    S100A8/A9 has important immunomodulatory roles in antibacterial defense, but its relevance in focal pneumonia caused by Streptococcus pneumoniae (S. pneumoniae) is understudied. We show that S100A9 was significantly increased in BAL fluids of patients with bacterial but not viral pneumonia and correlated with procalcitonin and sequential organ failure assessment scores. Mice deficient in S100A9 exhibited drastically elevated Zn2+^{2+} levels in lungs, which led to bacterial outgrowth and significantly reduced survival. In addition, reduced survival of S100A9 KO mice was characterized by excessive release of neutrophil elastase, which resulted in degradation of opsonophagocytically important collectins surfactant proteins A and D. All of these features were attenuated in S. pneumoniae-challenged chimeric WT→S100A9 KO mice. Similarly, therapy of S. pneumoniae-infected S100A9 KO mice with a mutant S100A8/A9 protein showing increased half-life significantly decreased lung bacterial loads and lung injury. Collectively, S100A9 controls central antibacterial immune mechanisms of the lung with essential relevance to survival of pneumococcal pneumonia. Moreover, S100A9 appears to be a promising biomarker to distinguish patients with bacterial from those with viral pneumonia. Trial registration: Clinical Trials register (DRKS00000620)

    Role of CD14 in a Mouse Model of Acute Lung Inflammation Induced by Different Lipopolysaccharide Chemotypes

    Get PDF
    Background: Recognition of lipopolysaccharide (LPS) is required for effective defense against invading gram-negative bacteria. Recently, in vitro studies revealed that CD14 is required for activation of the myeloid differentiation factor (MyD)88dependent Toll-like receptor (TLR)4 signaling pathway by smooth (S)-LPS, but not by rough (R)-LPS. The present study investigated the role of CD14 in induction of lung inflammation in mice by these different LPS chemotypes. Methodology/Results: Neutrophil accumulation and tumor necrosis factor (TNF) release in bronchoalveolar lavage fluid were determined 6 hours after intranasal treatment of wild type (WT) and CD14 knock-out (KO) mice with different doses S-LPS or R-LPS. The contribution of CD14 to lung inflammation induced by S-LPS or R-LPS depended on the LPS dose. At low doses, S-LPS and R-LPS induced neutrophil influx in a CD14-dependent manner. Low dose S-LPS-induced cytokine release also depended on CD14. Strikingly, neutrophil influx and TNF release induced by high dose S-LPS or R-LPS was diminished in the presence of CD14. Intranasal administration of sCD14 to CD14 KO mice treated with S-LPS partially reversed the inflammatory response to the response observed in WT mice. Conclusions: In conclusion, CD14 modulates effects of both S-LPS and R-LPS within the lung in a similar way. Except for R-LPS-induced TNF release, S-LPS and R-LPS at low dose induced acute lung inflammation in a CD14-dependent manner

    Intracellularly Released Cholesterol from Polymer-Based Delivery Systems Alters Cellular Responses to Pneumolysin and Promotes Cell Survival

    Get PDF
    Cholesterol is highly abundant within all human body cells and modulates critical cellular functions related to cellular plasticity, metabolism, and survival. The cholesterol-binding toxin pneumolysin represents an essential virulence factor of Streptococcus pneumoniae in establishing pneumonia and other pneumococcal infections. Thus, cholesterol scavenging of pneumolysin is a promising strategy to reduce S. pneumoniae induced lung damage. There may also be a second cholesterol-dependent mechanism whereby pneumococcal infection and the presence of pneumolysin increase hepatic sterol biosynthesis. Here we investigated a library of polymer particles varying in size and composition that allow for the cellular delivery of cholesterol and their effects on cell survival mechanisms following pneumolysin exposure. Intracellular delivery of cholesterol by nanocarriers composed of Eudragit E100-PLGA rescued pneumolysin-induced alterations of lipid homeostasis and enhanced cell survival irrespective of neutralization of pneumolysin

    Loss of Serpina1 in Mice Leads to Altered Gene Expression in Inflammatory and Metabolic Pathways

    Get PDF
    The SERPINA1 gene encodes alpha1-antitrypsin (AAT), an acute phase glycoprotein and serine protease inhibitor that is mainly (80-90%) produced in the liver. Point mutations in the SERPINA1 gene can lead to the misfolding, intracellular accumulation, and deficiency of circulating AAT protein, increasing the risk of developing chronic liver diseases or chronic obstructive pulmonary disease. Currently, siRNA technology can knock down the SERPINA1 gene and limit defective AAT production. How this latter affects other liver genes is unknown. Livers were taken from age- and sex-matched C57BL/6 wild-type (WT) and Serpina1 knockout mice (KO) aged from 8 to 14 weeks, all lacking the five serpin A1a-e paralogues. Total RNA was isolated and RNA sequencing, and transcriptome analysis was performed. The knockout of the Serpina1 gene in mice changed inflammatory, lipid metabolism, and cholesterol metabolism-related gene expression in the liver. Independent single-cell sequencing data of WT mice verified the involvement of Serpina1 in cholesterol metabolism. Our results from mice livers suggested that designing therapeutic strategies for the knockout of the SERPINA1 gene in humans must account for potential perturbations of key metabolic pathways and consequent mitigation of side effects.RNA sequencing was supported by the grant ISCIII-AESI PI20CIII/00015.S

    Phage Genome Diversity in a Biogas-Producing Microbiome Analyzed by Illumina and Nanopore GridION Sequencing

    Get PDF
    The microbial biogas network is complex and intertwined, and therefore relatively stable in its overall functionality. However, if key functional groups of microorganisms are affected by biotic or abiotic factors, the entire efficacy may be impaired. Bacteriophages are hypothesized to alter the steering process of the microbial network. In this study, an enriched fraction of virus-like particles was extracted from a mesophilic biogas reactor and sequenced on the Illumina MiSeq and Nanopore GridION sequencing platforms. Metagenome data analysis resulted in identifying 375 metagenome-assembled viral genomes (MAVGs). Two-thirds of the classified sequences were only assigned to the superkingdom Viruses and the remaining third to the family Siphoviridae, followed by Myoviridae, Podoviridae, Tectiviridae, and Inoviridae. The metavirome showed a close relationship to the phage genomes that infect members of the classes Clostridia and Bacilli. Using publicly available biogas metagenomic data, a fragment recruitment approach showed the widespread distribution of the MAVGs studied in other biogas microbiomes. In particular, phage sequences from mesophilic microbiomes were highly similar to the phage sequences of this study. Accordingly, the virus particle enrichment approach and metavirome sequencing provided additional genome sequence information for novel virome members, thus expanding the current knowledge of viral genetic diversity in biogas reactors.BMBF, 031L0103, de.NBI - Partner - MetaProtServBMBF, 031A532B, de.NBI - Etablierungsphase - Koordinierungs- und Administrationseinheit - CAU - GeschäftsstelleBMBF, 031A533A, de.NBI - Etablierungsphase - Leistungszentrum - BiGi - Bioinformatisches Resourcenzentrum für mikrobielle Genomforschung in Biotechnologie und MedizinBMBF, 031A533B, de.NBI - Etablierungsphase - Leistungszentrum - BiGi - Bioinformatisches Resourcenzentrum für mikrobielle Genomforschung in Biotechnologie und MedizinBMBF, 031A534A, de.NBI - Etablierungsphase - Leistungszentrum - BioInfra.Prot - Bioinformatik der ProteomikBMBF, 031A535A, de.NBI - Etablierungsphase - Leistungszentrum CiBi - Zentrum für integrative BioinformatikBMBF, 031A537A, de.NBI - Etablierungsphase - Heidelberg Center for Human Bioinformatics - HD-HuB - Humane Genetik und Genomik, Humane Mikrobiomik, systematische Phänotypisierung humaner ZellenBMBF, 031A537B, de.NBI - Etablierungsphase-European Molecular Biology Laboratory-HD-HUBBMBF, 031A537C, de.NBI - Etablierungsphase - Heidelberg Center for Human Bioinformatics - HD-HuBBMBF, 031A537D, de.NBI - Etablierungsphase - Heidelberg Center for Human Bioinformatics - HD-HuB - Humane Genetik und Genomik, Humane Metagenomik, systematische Phänotypisierung humaner Zellen, Epigenetik und de.NBI Cloud Standort Heidelberg/BerlinBMBF, 031A538A, de.NBI - Etablierungsphase - Leistungszentrum: RBC - RNA Bioinformati
    corecore