11,057 research outputs found

    The role of Lambda in the cosmological lens equation

    Full text link
    The cosmological constant Lambda affects cosmological gravitational lensing. Effects due to Lambda can be studied in the framework of the Schwarzschild-de Sitter spacetime. Two novel contributions, which can not be accounted for by a proper use of angular diameter distances, are derived. First, a term 2m b Lambda/3 has to be added to the bending angle, where "m" is the lens mass and "b" the impact parameter. Second, Lambda brings about a difference in the redshifts of multiple images. Both effects are quite small for real astrophysical systems (contribution to the bending < 0.1 microarcsec and difference in redshift < 10^{-7}).Comment: 4 pages. (Univ. Zuerich); v2: presentation improved, discussion extended, references to papers posted after the v1-version added. In press on Phys. Rev. Let

    Cooperative heterogeneous facilitation: multiple glassy states and glass-glass transition

    Full text link
    The formal structure of glass singularities in the mode-coupling theory (MCT) of supercooled liquids dynamics is closely related to that appearing in the analysis of heterogeneous bootstrap percolation on Bethe lattices, random graphs and complex networks. Starting from this observation one can build up microscopic on lattice realizations of schematic MCT based on cooperative facilitated spin mixtures. I discuss a microscopic implementation of the F13 schematic model including multiple glassy states and the glass-glass transition. Results suggest that our approach is flexible enough to bridge alternative theoretical descriptions of glassy matter based on the notions of quenched disorder and dynamic facilitation.Comment: 4 pages, 2 figure

    Saturated Critical Heat Flux in a Multi-Microchannel Heat Sink Fed by a Split Flow System

    Get PDF
    An extensive experimental campaign has been carried out for the measurement of saturated critical heat flux in a multi-microchannel copper heat sink. The heat sink was formed by 29 parallel channels that were 199 μm wide and 756 μm deep. In order to increase the critical heat flux and reduce the two-phase pressure drop, a split flow system was implemented with one central inlet at the middle of the channels and two outlets at either end. The base critical heat flux was measured using three HFC Refrigerants (R134a, R236fa and R245fa) for mass fluxes ranging from 250 to 1500 kg/m2 s, inlet subcoolings from −25 to −5 K and saturation temperatures from 20 to 50 °C. The parametric effects of mass velocity, saturation temperature and inlet subcooling were investigated. The analysis showed that significantly higher CHF was obtainable with the split flow system (one inlet–two outlets) compared to the single inlet–single outlet system, providing also a much lower pressure drop. Notably several existing predictive methods matched the experimental data quite well and quantitatively predicted the benefit of higher CHF of the split flow

    MarsLux: HI-Resolution Illumination Maps Generator for Mars

    Get PDF
    Illumination simulation codes for the Moon's surface have been thoroughly developed during the last years. Despite works done for the Moon, no studies have investigated the relation between sunlight illumination and the Martian surface applying those codes done for the Moon to Mars. The objective of this work is to describe the development of a surface illumination simulation code, called MarsLux, which allows users to make a detailed investigation of the illumination conditions on Mars, based on its topography and the relative position of the Sun. Our code can derive accurate illumination maps, form topographic data, showing areas that are fully illuminated, areas in total shadow, and areas with partial shade, in short computational times. Although the code does not take into account any atmospheric effect, the results proved to be of high accuracy. The maps generated are useful for geomorphological studies, to study gullies, thermal weathering, or mass wasting processes as well as for producing energy budget maps for future exploration missions.Fil: Spagnuolo, Mauro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Carballo, Federico Daniel. Servicio Geologico Minero Argentino; ArgentinaFil: Marco Figuera, R.. Jacobs University Bremen; AlemaniaFil: Rossi, A. P.. Jacobs University Bremen; Alemani

    Shear-thickening and entropy-driven reentrance

    Full text link
    We discuss a generic mechanism for shear-thickening analogous to entropy-driven phase reentrance. We implement it in the context of non-relaxational mean-field glassy systems: although very simple, the microscopic models we study present a dynamical phase diagram with second and first order stirring-induced jamming transitions leading to intermittency, metastability and phase coexistence as seen in some experiments. The jammed state is fragile with respect to change in the stirring direction. Our approach provides a direct derivation of a Mode-Coupling theory of shear-thickening.Comment: 4 pages, 4 figures, minor changes, references adde

    The rotational shear layer inside the early red-giant star KIC 4448777

    Get PDF
    We present the asteroseismic study of the early red-giant star KIC 4448777, complementing and integrating a previous work (Di Mauro et al. 2016), aimed at characterizing the dynamics of its interior by analyzing the overall set of data collected by the {\it Kepler} satellite during the four years of its first nominal mission. We adopted the Bayesian inference code DIAMOND (Corsaro \& De Ridder 2014) for the peak bagging analysis and asteroseismic splitting inversion methods to derive the internal rotational profile of the star. The detection of new splittings of mixed modes, more concentrated in the very inner part of the helium core, allowed us to reconstruct the angular velocity profile deeper into the interior of the star and to disentangle the details better than in Paper I: the helium core rotates almost rigidly about 6 times faster than the convective envelope, while part of the hydrogen shell seems to rotate at a constant velocity about 1.15 times lower than the He core. In particular, we studied the internal shear layer between the fast-rotating radiative interior and the slow convective zone and we found that it lies partially inside the hydrogen shell above r≃0.05Rr \simeq 0.05R and extends across the core-envelope boundary. Finally, we theoretically explored the possibility for the future to sound the convective envelope in the red-giant stars and we concluded that the inversion of a set of splittings with only low-harmonic degree l≤3l\leq 3, even supposing a very large number of modes, will not allow to resolve the rotational profile of this region in detail.Comment: accepted for publication on Ap

    Excess Body Weight and Gait Influence Energy Cost of Walking in Older Adults

    Get PDF
    Purpose: To study how excess body weight influences the energy cost of walking (Cw) and determine if overweight and obese older adults self-select stride frequency to minimize Cw. Methods: Using body mass index (BMI) men and women between the ages of 65–80 yr were separated into normal weight (NW, BMI ≤ 24.9 kg m−2, n = 13) and overweight-obese groups (OWOB, BMI ≥25.0 kg m−2, n = 13). Subjects walked at 0.83 m s−1 on an instrumented treadmill that recorded gait parameters, and completed three, six-minute walking trials; at preferred stride frequency (PSF), at +10% PSF, and at −10% PSF. Cw was determined by indirect calorimetry. Repeated measures analysis of variance was used to compare groups, and associations were tested with Pearson correlations, α = 0.05. Results: OWOB had 62% greater absolute Cw (301 ± 108 vs. 186 ± 104 J m−1, P \u3c 0.001) and 20% greater relative Cwkg (3.48 ± 0.95 vs. 2.91 ± 0.94 J kg−1 m−1, P = 0.046) than NW. Although PSF was not different between OWOB and NW (P = 0.626), Cw was 8% greater in OWOB at +10% PSF (P \u3c 0.001). At PSF OWOB spent less time in single-limb support (33.1 ± 1.5 vs. 34.9 ± 1.6 %GC, P = 0.021) and more time in double-limb support (17.5 ± 1.6 vs. 15.4 ± 1.4 %GC, P = 0.026) than NW. In OWOB, at PSF, Cw was correlated to impulse (r = −0.57, P = 0.027) and stride frequency (r = 0.51, P = 0.046). Conclusions: Excess body weight is associated with greater Cw in older adults, possibly contributing to reduced mobility in overweight and obese older persons

    Generating qudits with d=3,4 encoded on two-photon states

    Full text link
    We present an experimental method to engineer arbitrary pure states of qudits with d=3,4 using linear optics and a single nonlinear crystal.Comment: 4 pages, 1 eps figure. Minor changes. The title has been changed for publication on Physical Review
    • …
    corecore