11,819 research outputs found

    Projections from Subvarieties

    Full text link
    Let X⊂PNX\subset P^N be an n-dimensional connected projective submanifold of projective space. Let p:PN→PN−q−1p : P^N\to P^{N-q-1} denote the projection from a linear Pq⊂PNP^q\subset P^N. Assuming that X⊄PqX\not\subset P^q we have the induced rational mapping ψ:=pX:X→PN−q−1\psi:=p_X: X\to P^{N-q-1}. This article started as an attempt to understand the structure of this mapping when ψ\psi has a lower dimensional image. In this case of necessity we have Y:=X∩PqY := X\cap P^q is nonempty. We have in this article studied a closely related question, which includes many special cases including the case when the center of the projection \pn q is contained in XX. PROBLEM. Let YY be a proper connected k-dimensional projective submanifold of an nn-dimensional projective manifold XX. Assume that k>0k>0. Let LL be a very ample line bundle on XX such that L⊗IY L\otimes I_Y is spanned by global sections, where IYI_Y denotes the ideal sheaf of YY in XX. Describe the structure of (X,Y,L)(X,Y,L) under the additional assumption that the image of XX under the mapping ψ\psi associated to ∣L⊗IY∣| L\otimes I_Y| is lower dimensional

    Fully dissipative relativistic lattice Boltzmann method in two dimensions

    Full text link
    In this paper, we develop and characterize the fully dissipative Lattice Boltzmann method for ultra-relativistic fluids in two dimensions using three equilibrium distribution functions: Maxwell-J\"uttner, Fermi-Dirac and Bose-Einstein. Our results stem from the expansion of these distribution functions up to fifth order in relativistic polynomials. We also obtain new Gaussian quadratures for square lattices that preserve the spatial resolution. Our models are validated with the Riemann problem and the limitations of lower order expansions to calculate higher order moments are shown. The kinematic viscosity and the thermal conductivity are numerically obtained using the Taylor-Green vortex and the Fourier flow respectively and these transport coefficients are compared with the theoretical prediction from Grad's theory. In order to compare different expansion orders, we analyze the temperature and heat flux fields on the time evolution of a hot spot

    Rigidity and intermediate phases in glasses driven by speciation

    Full text link
    The rigid to floppy transitions and the associated intermediate phase in glasses are studied in the case where the local structure is not fully determined from the macroscopic concentration. The approach uses size increasing cluster approximations and constraint counting algorithms. It is shown that the location and the width of the intermediate phase and the corresponding structural, mechanical and energetical properties of the network depend crucially on the way local structures are selected at a given concentration. The broadening of the intermediate phase is obtained for networks combining a large amount of flexible local structural units and a high rate of medium range order.Comment: 4 pages, 4 figure

    Metastability and anomalous fixation in evolutionary games on scale-free networks

    Get PDF
    We study the influence of complex graphs on the metastability and fixation properties of a set of evolutionary processes. In the framework of evolutionary game theory, where the fitness and selection are frequency-dependent and vary with the population composition, we analyze the dynamics of snowdrift games (characterized by a metastable coexistence state) on scale-free networks. Using an effective diffusion theory in the weak selection limit, we demonstrate how the scale-free structure affects the system's metastable state and leads to anomalous fixation. In particular, we analytically and numerically show that the probability and mean time of fixation are characterized by stretched exponential behaviors with exponents depending on the network's degree distribution.Comment: 5 pages, 4 figures, to appear in Physical Review Letter

    The Ising M-p-spin mean-field model for the structural glass: continuous vs. discontinuous transition

    Full text link
    The critical behavior of a family of fully connected mean-field models with quenched disorder, the M−pM-p Ising spin glass, is analyzed, displaying a crossover between a continuous and a random first order phase transition as a control parameter is tuned. Due to its microscopic properties the model is straightforwardly extendable to finite dimensions in any geometry.Comment: 10 pages, 1 figure, 1 tabl

    Physics with nonperturbative quantum gravity: radiation from a quantum black hole

    Get PDF
    We study quantum gravitational effects on black hole radiation, using loop quantum gravity. Bekenstein and Mukhanov have recently considered the modifications caused by quantum gravity on Hawking's thermal black-hole radiation. Using a simple ansatz for the eigenstates the area, they have obtained the intriguing result that the quantum properties of geometry affect the radiation considerably, yielding a definitely non-thermal spectrum. Here, we replace the simple ansatz employed by Bekenstein and Mukhanov with the actual eigenstates of the area, computed using the loop representation of quantum gravity. We derive the emission spectra, using a classic result in number theory by Hardy and Ramanujan. Disappointingly, we do not recover the Bekenstein-Mukhanov spectrum, but --effectively-- a Hawking's thermal spectrum. The Bekenstein-Mukhanov result is therefore likely to be an artefact of the naive ansatz, rather than a robust result. The result is an example of concrete (although somewhat disappointing) application of nonperturbative quantum gravity.Comment: 4 pages, latex-revtex, no figure

    Beyond the Death of Linear Response: 1/f optimal information transport

    Full text link
    Non-ergodic renewal processes have recently been shown by several authors to be insensitive to periodic perturbations, thereby apparently sanctioning the death of linear response, a building block of nonequilibrium statistical physics. We show that it is possible to go beyond the ``death of linear response" and establish a permanent correlation between an external stimulus and the response of a complex network generating non-ergodic renewal processes, by taking as stimulus a similar non-ergodic process. The ideal condition of 1/f-noise corresponds to a singularity that is expected to be relevant in several experimental conditions.Comment: 4 pages, 2 figures, 1 table, in press on Phys. Rev. Let

    Noise and Correlations in a Spatial Population Model with Cyclic Competition

    Get PDF
    Noise and spatial degrees of freedom characterize most ecosystems. Some aspects of their influence on the coevolution of populations with cyclic interspecies competition have been demonstrated in recent experiments [e.g. B. Kerr et al., Nature {\bf 418}, 171 (2002)]. To reach a better theoretical understanding of these phenomena, we consider a paradigmatic spatial model where three species exhibit cyclic dominance. Using an individual-based description, as well as stochastic partial differential and deterministic reaction-diffusion equations, we account for stochastic fluctuations and spatial diffusion at different levels, and show how fascinating patterns of entangled spirals emerge. We rationalize our analysis by computing the spatio-temporal correlation functions and provide analytical expressions for the front velocity and the wavelength of the propagating spiral waves.Comment: 4 pages of main text, 3 color figures + 2 pages of supplementary material (EPAPS Document). Final version for Physical Review Letter
    • …
    corecore