1,296 research outputs found

    Homology Modeling and Docking Analysis of the Interaction between Polyphenols and Mammalian 20S Proteasomes.

    Get PDF
    Molecular docking of small ligands to biologically active macromolecules has become a valuable strategy to predict the stability of complexes between potential partners and their binding modes. In this perspective, we applied this computational procedure to rationalize the reported role of polyphenols as inhibitors of the mammalian 20S proteasomes. In particular, polyphenols were shown to modulate each proteasomal activity at different extents both in the constitutive and the inducible enzyme. We performed a flexible molecular docking analysis between a set of polyphenols previously demonstrated to have the highest binding affinity and both the constitutive (from deposited PDB structures) and homology modeled active subunits of the IFN-gamma inducible proteasome, to provide insight into the possible mechanism of interaction. Among the tested polyphenols, (-)-epigallocatechin-3-gallate showed the highest affinity for the proteasome subunits, both in terms of intermolecular energy and predicted equilibrium constants, in particular for beta 5 and beta 5i subunits (E(Total)=-66 kcal/mol, K(i)=81.3 mu M and E(Total)=-83.9 kcal/mol, K(i)=0.29 mu M, respectively), known to be related to the chymotrypsin-like and BrAAP activities. Collectively, polyphenols showed a higher affinity for the inducible subunits, in agreement with previous in vitro studies. Additionally, different contributions to the interaction energy (van der Waals, electrostatic, H-bond) of proteasome-polyphenols complexes were dissected

    Aspirin modulates LPS-induced nitric oxide release in rat glial cells

    Get PDF
    Nitric oxide and prostaglandins are among the numerous substances released by activated glial cells. The aim of this study was to evaluate the effect of high-level aspirin on iNOS expression in cultured rat glial cells treated with lipopolysaccharide (LPS) as pathological stimulator. Using Western Blotting, we verified that aspirin enhanced LPS-induced iNOS expression and the presence of 15-deoxy-Delta(12,14)-prostaglandin (15d-PGJ(2)) suppressed this aspirin effect. However, the exposure of LPS-treated glial cells to aspirin resulted in a decrease of NO production. These results suggest that aspirin interferes with the cross-talk of prostaglandins and NO, blocking the endogenous negative control exerted by COX products on iNOS expression. On the other side, aspirin seems to act directly on iNOS reducing its activity, even if it does not completely block NO release by LPS-stimulated glial cells. Then aspirin could maintain homeostatic functions of NO, while it prevents toxic effects, corresponding to high NO concentrations. (c) 2005 Elsevier Ireland Ltd. All rights reserved

    Amyloid peptides in different assembly states and related effects on isolated and cellular proteasomes

    Get PDF
    The role of amyloid-β protein (Aβ) in the pathogenesis of Alzheimer's disease (AD) has been widely investigated and amyloid aggregates are considered a major cause of neuronal dysfunction. Increasing evidence has identified a correlation between this protein and the proteasome, the cellular proteolytic machinery, in particular the ubiquitin–proteasome system. The 20S proteasome is the catalytic core of a complex, known as 26S proteasome, and is the main responsible for the clearance of misfolded and oxidized proteins. In this work we have investigated the effects of different assembly states of two major amyloid peptides, Aβ (1–40) and Aβ (1–42) on the 20S proteasome functionality and on the ubiquitin dependent pathway of protein degradation. In particular, we have tested proteasome activities after Aβ treatment on purified 20S complexes and on lysates of a human neuroblastoma cell line. Our findings show a significant decrease in proteasome activity, more evident in cell lysates than in isolated complexes, and an increased amount of ubiquitin–protein conjugates and of a known proteasome substrate (p27). Furthermore, the altered proteasome functionality is not associated with a decrease in cell viability, but is linked with increased levels of protein oxidation

    20S proteasome mediated degradation of DHFR: implications in neurodegenerative disorders

    Get PDF
    The 20S proteasome is responsible for the degradation of protein substrates implicated in the onset and progression of neurodegenerative disorders, such as a-synuclein and tau protein. Here we show that the 20S proteasome isolated from bovine brain directly hydrolyzes, in vitro, the dihydrofolate reductase (DHFR), demonstrated to be involved in the pathogenesis of neurodegenerative diseases. Furthermore, the DHFR susceptibility to proteolysis is enhanced by oxidative conditions induced by peroxynitrite, mimicking the oxidative environment typical of these disorders. The results obtained suggest that the folate metabolism may be impaired by an increased degradation of DHFR, mediated by the 20S proteasome

    Binding of recombinant PrPc to human plasminogen: kinetic and thermodynamic study using a resonant mirror biosensor

    Get PDF
    Transmissible spongiform encephalopathies are a class of sporadic, genetic and transmissible neurodegenerative diseases that affect both humans and animals. Propagation of these diseases is thought to be due to the misfolding of a neuronal glyco-protein, PrP(c), into a pathological insoluble conformer, PrP(Sc). In earlier works, some serum components were identified as exclusive PrP(Sc)-interacting proteins (Fisher et al., Nature 2000;408:479), and thus those macromolecules were thought to represent a potential diagnostic endogenous factor discriminating between normal and pathological prion proteins. In contrast, in agreement with a recent work (Kornblatt et al., Biochem Biophys Res Commun 2003;305:518), in this paper we present a detailed thermodynamic and kinetic characterization of the interaction between recombinant bovine PrP(c 25-242) and the human serum component plasminogen, measured using a resonant mirror technique: our results reveal a high-affinity interaction between the two binding partners. For comparison, the complex obtained from the purified full-length PrP(c) and human plasminogen was also studied: both prion proteins (the recombinant bovine PrP(c 25-242) and the purified full-length PrP(c)) are able to bind human plasminogen. Both kinetic and thermodynamic parameters are affected by the modulation exerted by the H(+) ions in solution. Moreover, the analysis of binding, according to canonical linkage relationships, suggests the involvement of a His residue, consistent with the interaction between other serine (pro)enzymes and their ligands

    Effect of polyphenolic compounds on the proteolytic activities of constitutive and immuno-proteasomes

    Get PDF
    The effect of several polyphenols on the 20S proteasomes, both the constitutive and the LMP proteasomes, isolated from bovine tissues, has been investigated. Polyphenolic compounds show many biological activities such as antiviral, antibacterial, antifungal, anti-inflammatory, antimutagenic, and antiallergic activities. However, the molecular mechanism underlying these effects has not been identified. It is well established that polyphenols possess inhibitory activities on several enzymes and among them the 20S proteasome. In the present work, the ChT-L, BrAAP, PGPH, and T-L activities of the isolated constitutive and immuno-proteasomes were assayed in order to get an overall information on the polyphenols binding to the complexes. The effects of the polyphenols on the proteasomal activities were analyzed, taking into account the different subunits composition of the two complexes. Furthermore the same activities were measured on whole extracts from cancer cells exposed to EGCG and gallic acid, evaluating, also, their antioxidant action under oxidative stress. EGCG and gallic acid are able to affect the 20S proteasomes functionality, depending on the complex subunit composition and, in cell extracts, they behave both as antioxidants and proteasome effectors

    A Historical Perspective of Cardiac Implantable Electronic Device Infection: How a Menace Can Drive Technological and Clinical Improvement

    Get PDF
    In recent decades there has been a relevant increase in the implantation rate of cardiac implantable electronic devices (CIEDs), albeit with relevant geographical inhomogeneities. Despite the positive impact on clinical outcomes, the possibility of major complications is not negligible, particularly with respect to CIED infections. CIED infections significantly affect morbidity and mortality, especially in instances of delayed diagnosis and appropriate treatment. In the present review, we will start to depict the factors underlying the development of CIED infection as well as the difficulties related to its diagnosis and treatment. We will explain the reasons underlying the need to focus on prophylaxis rather than treatment, in view of the poor outcomes despite improvements in lead extraction procedures. This will lead to the consideration of management of this complication in a hub-spoke manner, and to our analysis of the several technological and procedural improvements developed to minimize this complication. These include prolongation of CIED longevity, the development of leadless devices, and integrated prophylactic approaches. We will conclude with a discussion regarding new devices and strategies under development. This complete excursus will provide the reader with a new perspective on how a major complication can drive technological improvements

    Structure-function relationships in bovine thymus 20S proteasome: a fluorimetric study

    Get PDF
    The structure-function relationships occurring on the bovine thymus 20S proteasome, which exhibits the features of an immunoproteasome, have been studied. The investigation has been performed, essentially, using a fluorimetric approach, taking advantage either of the sensitivity of the complex to sodium dodecil sulfate and chaotropic agents (urea and guanidine hydrochloride) or of the presence, on the molecule, of a high number of tryptophan residues. The results obtained indicate that the perturbation or the oxidation of these residues affect the catalytic events taking place on the thymus proteasome and that the functional effects determined by SDS and chaotropic agents most likely occur through a series of progressive structural modifications leading to an inactive molecule. The presence of structural intermediates in the proteasome inactivation process suggests that thymus proteasome is a molecule characterized, at the same time, by structural flexibility (modulation of active sites) and structural stability (maintaining of the quaternary structure) in agreement with its crucial role in the cell life cycle. (C) 2001 Elsevier Science B.V. All rights reserved

    Effects of Diisodecyl Phthalate on PPAR:RXR-Dependent Expression Pathways in Sea Bream Hepatocytes

    Get PDF
    Evidence that endocrine-disrupting chemicals (EDCs) may target metabolic disturbances, beyond interference with the functions of the endocrine systems has recently accumulated. Among EDCs, phthalate plasticizers like the diisodecyl phthalate (DiDP) are commonly found contaminants of aquatic environments and have been suggested to function as obesogens by activating peroxisome proliferator activated receptors (PPARs), a subset of nuclear receptors (NRs) that act as metabolic sensors, playing pivotal roles in lipid homeostasis. However, little is known about the modulation of PPAR signaling pathways by DiDP in fish. In this study, we have first investigated the ligand binding efficiency of DiDP to the ligand binding domains of PPARs and retinoid-X-receptor-α (RXRα) proteins in fish using a molecular docking approach. Furthermore, in silico predictions were integrated by in vitro experiments to show possible dose-relationship effects of DiDP on PPAR:RXR-dependent gene expression pathways using sea bream hepatocytes. We observed that DiDP shows high binding efficiency with piscine PPARs demonstrating a greater preference for RXRα. Our studies also demonstrated the coordinate increased expression of PPARs and RXRα, as well as their downstream target genes in vitro. Principal component analysis (PCA) showed the strength of relationship between transcription of most genes involved in fatty acid metabolism and PPAR mRNA levels. In particular, fatty acid binding protein (FABP) was highly correlated to all PPARs. The results of this study suggest that DiDP can be considered an environmental stressor that activates PPAR:RXR signaling to promote long-term changes in lipid homeostasis leading to potential deleterious physiological consequences in teleost fish

    Natural polyphenols as proteasome modulators and their role as anti-cancer compounds

    Get PDF
    The purpose of this review is to discuss the effect of natural antioxidantcompounds as modulators of the 20S proteasome, a multi-enzymatic multicatalytic complex present in the cytoplasm and nucleus of eukaryotic cells and involved in several cellular activities such as cell-cycle progression, proliferation and the degradation of oxidized and damaged proteins. From this perspective, proteasome inhibition is a promising approach to anticancer therapy and such natural antioxidant effectors can be considered as potential relevant adjuvants and pharmacological models in the study of new drugs
    corecore