42 research outputs found

    Non-adiabatic holonomic quantum computation

    Full text link
    We develop a non-adiabatic generalization of holonomic quantum computation in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. We show how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing optical transitions in a generic three-level Λ\Lambda configuration. Our scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde

    Multi Mode Interferometer for Guided Matter Waves

    Get PDF
    We describe the fundamental features of an interferometer for guided matter waves based on Y-beam splitters and show that, in a quasi two-dimensional regime, such a device exhibits high contrast fringes even in a multi mode regime and fed from a thermal source.Comment: Final version (accepted to PRL

    Open system effects on slow light and electromagnetically induced transparency

    Full text link
    The coherence properties of a three-level Λ\Lambda-system influenced by a Markovian environment are analyzed. A coherence vector formalism is used and a vector form of the Lindblad equation is derived. Together with decay channels from the upper state, open system channels acting on the subspace of the two lower states are investigated, i.e., depolarization, dephasing, and amplitude damping channels. We derive an analytic expression for the coherence vector and the concomitant optical susceptibility, and analyze how the different channels influence the optical response. This response depends non-trivially on the type of open system interaction present, and even gain can be obtained. We also present a geometrical visualization of the coherence vector as an aid to understand the system response.Comment: Several changes; journal reference adde

    Soft Color Interactions and Diffractive Hard Scattering at the Fermilab Tevatron

    Full text link
    An improved understanding of nonperturbative QCD can be obtained by the recently developed soft color interaction models. Their essence is the variation of color string-field topologies, giving a unified description of final states in high energy interactions, e.g., diffractive and nondiffractive events in ep and ppbar. Here we present a detailed study of such models (the soft color interaction model and the generalized area law model) applied to ppbar, considering also the general problem of the underlying event including beam particle remnants. With models tuned to HERA ep data, we find a good description also of Tevatron data on production of W, beauty and jets in diffractive events defined either by leading antiprotons or by one or two rapidity gaps in the forward or backward regions. We also give predictions for diffractive J/psi production where the soft exchange mechanism produces both a gap and a color singlet ccbar state in the same event. This soft color interaction approach is also compared with Pomeron-based models for diffraction, and some possibilities to experimentally discriminate between these different approaches are discussed.Comment: 35 pages, 15 figures, uses REVTeX. Minor changes, version to appear in Phys. Rev.

    Absorption Imaging of Ultracold Atoms on Atom Chips

    Full text link
    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions.Comment: 12 pages, 8 figures. v2 contains updated figures, modifications to tex

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Quantum Dynamics of Molecular Systems and Guided Matter Waves

    No full text
    Quantum dynamics is the study of time-dependent phenomena in fundamental processes of atomic and molecular systems. This thesis focuses on systems where nature reveals its quantum aspect; e.g. in vibrational resonance structures, in wave packet revivals and in matter wave interferometry. Grid based numerical methods for solving the time-dependent Schrödinger equation are implemented for simulating time resolved molecular vibrations and to compute photo-electron spectra, without the necessity of diagonalizing a large matrix to find eigenvalues and eigenvectors. Pump-probe femtosecond laser spectroscopy on the sodium potassium molecule, showing a vibrational period of 450 fs, is theoretically simulated. We find agreement with experiment by inclusion of the finite length laser pulse and finite temperature effects. Complicated resonance structures observed experimentally in photo-electron spectra of hydrogen- and deuterium chloride is analyzed by a numerical computation of the spectra. The dramatic difference in the two spectra arises from non-adiabatic interactions, i.e. the interplay between nuclear and electron dynamics. We suggest new potential curves for the 32Σ+ and 42Σ+ states in HCI+. It is possible to guide slow atoms along magnetic potentials like light is guided in optical fibers. Quantum mechanics dictates that matter can show wave properties. A proposal for a multi mode matter wave interferometer on an atom chip is studied by solving the time-dependent Schrödinger equation in two dimensions. The results verifies a possible route for an experimental realization. An improved representation for wave functions using a discrete set of coherent states is presented. We develop a practical method for computing the expansion coefficients in this non-orthogonal set. It is built on the concept of frames, and introduces an iterative method for computing a representation of the identity operator. The phase-space localization property of the coherent states gives adaptability and better sampling efficiency
    corecore