15 research outputs found

    Modelling reveals endogenous osmotic adaptation of storage tissue water potential as an important driver determining different stem diameter variation patterns in the mangrove species Avicennia marina and Rhizophora stylosa

    No full text
    Background Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation. Methods Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion-tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa. Key results Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species. Conclusions The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth

    Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements

    No full text
    To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conductionconvection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements

    Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina

    No full text
    Mangrove forests depend on a dense structure of sufficiently large trees to fulfil their essential functions as providers of food and wood for animals and people, CO2 sinks and protection from storms. Growth of these forests is known to be dependent on the salinity of soil water, but the influence of foliar uptake of rainwater as a freshwater source, additional to soil water, has hardly been investigated. Under field conditions in Australia, stem diameter variation, sap flow and stem water potential of the grey mangrove (Avicennia marina (Forssk.) Vierh.) were simultaneously measured during alternating dry and rainy periods. We found that sap flow in A. marina was reversed, from canopy to roots, during and shortly after rainfall events. Simultaneously, stem diameters rapidly increased with growth rates up to 70 ÎĽm h-1, which is about 25-75 times the normal growth rate reported in temperate trees. A mechanistic tree model was applied to provide evidence that A. marina trees take up water through their leaves, and that this water contributes to turgor-driven stem growth. Our results indicate that direct uptake of freshwater by the canopy during rainfall supports mangrove tree growth and serve as a call to consider this water uptake pathway if we aspire to correctly assess influences of changing rainfall patterns on mangrove tree growth

    Sap-flux density measurement methods: working principles and applicability

    No full text
    Sap-flow measurements have become increasingly important in plant science. Since the early experiments with dyes, many methods have been developed. Most of these are based on the application of heat in the sapwood which is transported by the moving sap. By measuring changes in the temperature field around the heater, sap flow can be derived. Although these methods all have the same basis, their working principles vary widely. A first distinction can be made between those measuring the sap-flow rate (g h–1) such as the stem heat balance and trunk sector heat balance method and those measuring sap-flux density (cm3 cm–2 h–1). Within the latter, the thermal dissipation and heat field deformation methods are based on continuous heating, whereas the compensation heat pulse velocity, Tmax,heat ratio, calibrated average gradient and Sapflow+ methods are based on the application of heat pulses. Each of these methods has its advantages and limitations. Although the sap-flow rate methods have been adequately described in previous reviews, recent developments in sap-flux density methods prompted a synthesis of the existing but scattered literature. This paper reviews sap-flux density methods to enable users to make a well founded choice, whether for practical applications or fundamental research questions, and to encourage further improvement in sap-flux density measurement techniques

    Long-term versus daily stem diameter variation in co-occurring mangrove species: environmental versus ecophysiological drivers

    No full text
    High temporal resolution stem diameter variation (SDV) patterns have been widely recognized as a tool to study fundamental plant physiological mechanisms underlying whole-plant functioning and growth. As an integrative response to hydraulic and carbon related processes, SDV research has greatly improved insights in plant functioning of several herbaceous and woody species. Nevertheless, to date little detailed information on SDV and related physiological processes is available for mangrove species. By measuring continuous tree physiological variables such as stem diameter variations, sap flow and stem water potential in relation to the microclimatic conditions, the water use strategies of two co-occurring mangrove species, Avicennia marina (Forssk.) Vierh. and Rhizophora stylosa Griff. were investigated. Even though both species showed a similar long-term growth trend, closely linked to the environmental conditions, their daily SDV pattern was markedly different. While for Avicennia marina the SDV showed the standard daily pattern of morning decline and evening rise, the opposite daily SDV pattern was observed for Rbizophora stylosa. The contrasting patterns of SDV in both species thriving in the same environment indicates the importance and complexity of physiological endogenous mechanisms in addition to environmental conditions in controlling SDV and radial stem growth. (C) 2014 Elsevier B.V. All rights reserved
    corecore