840 research outputs found

    Warfare, Fiscal Capacity, and Performance

    Get PDF
    We exploit differences in casualties sustained in pre-modern wars to estimate the impact of fiscal capacity on economic performance. In the past, states fought different amounts of external conflicts, of various lengths and magnitudes. To raise the revenues to wage wars, states made fiscal innovations, which persisted and helped to shape current fiscal institutions. Economic historians claim that greater fiscal capacity was the key long-run institutional change brought about by historical conflicts. Using casualties sustained in pre-modern wars to instrument for current fiscal institutions, we estimate substantial impacts of fiscal capacity on GDP per worker. The results are robust to a broad range of specifications, controls, and sub-samples

    ULEEN: A Novel Architecture for Ultra Low-Energy Edge Neural Networks

    Full text link
    The deployment of AI models on low-power, real-time edge devices requires accelerators for which energy, latency, and area are all first-order concerns. There are many approaches to enabling deep neural networks (DNNs) in this domain, including pruning, quantization, compression, and binary neural networks (BNNs), but with the emergence of the "extreme edge", there is now a demand for even more efficient models. In order to meet the constraints of ultra-low-energy devices, we propose ULEEN, a model architecture based on weightless neural networks. Weightless neural networks (WNNs) are a class of neural model which use table lookups, not arithmetic, to perform computation. The elimination of energy-intensive arithmetic operations makes WNNs theoretically well suited for edge inference; however, they have historically suffered from poor accuracy and excessive memory usage. ULEEN incorporates algorithmic improvements and a novel training strategy inspired by BNNs to make significant strides in improving accuracy and reducing model size. We compare FPGA and ASIC implementations of an inference accelerator for ULEEN against edge-optimized DNN and BNN devices. On a Xilinx Zynq Z-7045 FPGA, we demonstrate classification on the MNIST dataset at 14.3 million inferences per second (13 million inferences/Joule) with 0.21 μ\mus latency and 96.2% accuracy, while Xilinx FINN achieves 12.3 million inferences per second (1.69 million inferences/Joule) with 0.31 μ\mus latency and 95.83% accuracy. In a 45nm ASIC, we achieve 5.1 million inferences/Joule and 38.5 million inferences/second at 98.46% accuracy, while a quantized Bit Fusion model achieves 9230 inferences/Joule and 19,100 inferences/second at 99.35% accuracy. In our search for ever more efficient edge devices, ULEEN shows that WNNs are deserving of consideration.Comment: 14 pages, 14 figures Portions of this article draw heavily from arXiv:2203.01479, most notably sections 5E and 5F.

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    Microarray Analysis of Human Monocytes Infected with Francisella tularensis Identifies New Targets of Host Response Subversion

    Get PDF
    Francisella tularensis is a gram-negative facultative bacterium that causes the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. In order to help understand the mechanisms by which this occurs, we performed Affymetrix microarray analysis on transcripts from blood monocytes infected with the virulent Type A Schu S4 strain. Results showed that expression of several host response genes were reduced such as those associated with interferon signaling, Toll-like receptor signaling, autophagy and phagocytosis. When compared to microarrays from monocytes infected with the less virulent F. tularensis subsp. novicida, we found qualitative differences and also a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes in the Schu S4 strain. Notably, the PI3K / Akt1 pathway appeared specifically down-regulated following Schu S4 infection and a concomitantly lower cytokine response was observed. This study identifies several new factors potentially important in host cell subversion by the virulent Type A F. tularensis that may serve as novel targets for drug discovery

    Extraordinary room-temperature photoluminescence in WS2 monolayers

    Full text link
    Individual monolayers of metal dichalcogenides are atomically thin two-dimensional crystals with attractive physical properties different from their bulk layered counterpart. Here we describe the direct synthesis of WS2 monolayers with triangular morphologies and strong room-temperature photoluminescence (PL). Bulk WS2 does not present PL due to its indirect band gap nature. The edges of these monolayers exhibit PL signals with extraordinary intensity, around 25 times stronger than the platelets center. The structure and composition of the platelet edges appear to be critical for the PL enhancement effect. Electron diffraction revealed that platelets present zigzag edges, while first-principles calculations indicate that sulfur-rich zigzag WS2 edges possess metallic edge states, which might tailor the optical response reported here. These novel 2D nanoscale light sources could find diverse applications including the fabrication of flexible/transparent/low-energy optoelectronic devices

    The Role of Galectin-1 and Galectin-3 in the Mucosal Immune Response to Citrobacter rodentium Infection

    Get PDF
    Despite their abundance at gastrointestinal sites, little is known about the role of galectins in gut immune responses. We have therefore investigated the Citrobacter rodentium model of colonic infection and inflammation in Galectin-1 or Galectin-3 null mice. Gal-3 null mice showed a slight delay in colonisation after inoculation with C. rodentium and a slight delay in resolution of infection, associated with delayed T cell, macrophage and dendritic cell infiltration into the gut mucosa. However, Gal-1 null mice also demonstrated reduced T cell and macrophage responses to infection. Despite the reduced T cell and macrophage response in Gal-1 null mice, there was no effect on C. rodentium infection kinetics and pathology. Overall, Gal-1 and Gal-3 play only a minor role in immunity to a gut bacterial pathogen

    Polycomb Group Protein Bmi1 Is Required for Growth of RAF Driven Non-Small-Cell Lung Cancer

    Get PDF
    Background: We have previously described a RAF oncogene driven transgenic mouse model for non small cell lung cancer (NSCLC). Here we examine whether tumor initiation and growth requires the stem cell self-renewal factor Bmi1. Principal Findings: In order to evaluate Bmi1 function in NSCLC two founder lines that differ in incidence and latency of tumor formation were compared. Ablation of Bmi1 expression in both lines had a dramatically decreased tumor growth. As the line with shorter latency matched the life span of Bmi1 knock out mice, these mice were chosen for further study. The absence of Bmi1 did not decrease the number of tumor initiation in these mice as only the size and not the number of tumors decreased. Reduction in tumor growth resulted from an increase in cell death and decrease in cell cycle progression that corresponded with up-regulation of the p16 INK4a and p19 ARF. Significance: The data identifies Bmi1 as an important factor for expansion but not initiation of RAF driven NSCLC

    Protective Effect of Curcumin on Pulmonary and Cardiovascular Effects Induced by Repeated Exposure to Diesel Exhaust Particles in Mice

    Get PDF
    Particulate air pollution has been associated with increased risk of cardiopulmonary diseases. However, the underlying mechanisms are not fully understood. We have previously demonstrated that single dose exposure to diesel exhaust particle (DEP) causes lung inflammation and peripheral thrombotic events. Here, we exposed mice with repeated doses of DEP (15µg/animal) every 2nd day for 6 days (a total of 4 exposures), and measured several cardiopulmonary endpoints 48 h after the end of the treatments. Moreover, the potential protective effect of curcumin (the yellow pigment isolated from turmeric) on DEP-induced cardiopulmonary toxicity was assessed. DEP exposure increased macrophage and neutrophil numbers, tumor necrosis factor α (TNF α) in the bronchoalveolar lavage (BAL) fluid, and enhanced airway resistance to methacoline measured invasively using Flexivent. DEP also significantly increased plasma C-reactive protein (CRP) and TNF α concentrations, systolic blood pressure (SBP) as well as the pial arteriolar thrombosis. It also significantly enhanced the plasma D-dimer and plasminogen activator inhibitor-1 (PAI-1). Pretreatment with curcumin by oral gavage (45 mg/kg) 1h before exposure to DEP significantly prevented the influx of inflammatory cells and the increase of TNF α in BAL, and the increased airway resistance caused by DEP. Likewise, curcumin prevented the increase of SBP, CRP, TNF α, D-dimer and PAI-1. The thrombosis was partially but significantly mitigated. In conclusion, repeated exposure to DEP induced lung and systemic inflammation characterized by TNFα release, increased SBP, and accelerated coagulation. Our findings indicate that curcumin is a potent anti-inflammatory agent that prevents the release of TNFα and protects against the pulmonary and cardiovascular effects of DEP
    corecore