9,851 research outputs found
Scattering properties of Venus' surface
Radar backscatter functions Sigma-(carat)(sub 0)(phi) for incidence angles between 0 less than or equal to phi less than or equal to 4-10 deg were derived from Magellan altimetry radar echoes. The procedure includes constrained solution of a system of simultaneous equations for which the echo-spectrum and echo time profile are inputs. A practical and workable set of constraints was applied; optimization and improved results are expected as the analysis matures. The scattering functions yield information on small-scale surface structures (tens of centimeters to tens of meters) but averaged over hundreds of sq km. RMS surface slopes derived from fits of analytic functions to the Sigma-(carat)(sub 0)(phi) results were converted to map form and show patterns similar to those reported using other techniques. While all three forms are found on Venus, fit residuals imply that an exponential scattering function matches data better than either the Hagfors or Gaussian form in most areas, although the Hagfors function may be a better descriptor at some sites. Limited study of image data indicates that average backscatter cross section, and possibly its slope, can be derived at oblique angles (17 deg less than or equal to phi less than or equal to 45 deg). Offsets of the echo peak in altimetry spectra are surprisingly common and are loosely correlated with Venus topography, but no cause for this phenomenon was identified
Modified Bennett-Brassard 1984 Quantum Key Distribution With Two-way Classical Communications
The quantum key distribution protocol without public announcement of bases is
equipped with a two-way classical communication symmetric entanglement
purification protocol. This modified key distribution protocol is
unconditionally secure and has a higher tolerable error rate of 20%, which is
higher than previous scheme without public announcement of bases.Comment: 5 pages. To appear in Physical Review
Efficient One-Way Secret-Key Agreement and Private Channel Coding via Polarization
We introduce explicit schemes based on the polarization phenomenon for the
tasks of one-way secret key agreement from common randomness and private
channel coding. For the former task, we show how to use common randomness and
insecure one-way communication to obtain a strongly secure key such that the
key construction has a complexity essentially linear in the blocklength and the
rate at which the key is produced is optimal, i.e., equal to the one-way
secret-key rate. For the latter task, we present a private channel coding
scheme that achieves the secrecy capacity using the condition of strong secrecy
and whose encoding and decoding complexity are again essentially linear in the
blocklength.Comment: 18.1 pages, 2 figures, 2 table
Sainfoin – New Data on Anthelmintic Effects and Production in Sheep and Goats
Gastrointestinal nematodes (GIN) are one of the most important problems affecting health and therefore performance and welfare in small ruminant husbandry. The control of these parasites in the past strongly relied on the repeated use of anthelmintic drugs. This has led to nematode populations which are resistant to most of the currently available anthelmintics. Furthermore customer’s demands for organic and residue free animal products are increasing. The aforementioned problems have given a strong impetus for the development of new non-chemical strategies to control GIN. Previous research has pointed out the anthelmintic potential of sainfoin (Onobrychis viciifolia) and other tanniferous (CT) feed sources in goats and lambs infected with GIN. A recent Swiss experiment focussed on the use of sainfoin and field bean (Vicia faba, cv. Scirocco) as single CT sources as well as in combination for additional synergic effects, to reduce periparturient GIN egg rise of ewes in late gestation and early lactation. Another experiment with Alpine goats concentrated on the influence of sainfoin on milk performance and cheese quality. The results of these experiments will be presented and discussed in connection with previous knowledge on (i) anthelmintic effects of sainfoin and (ii) the influence of sainfoin administration on performance
Shared Information -- New Insights and Problems in Decomposing Information in Complex Systems
How can the information that a set of random variables
contains about another random variable be decomposed? To what extent do
different subgroups provide the same, i.e. shared or redundant, information,
carry unique information or interact for the emergence of synergistic
information?
Recently Williams and Beer proposed such a decomposition based on natural
properties for shared information. While these properties fix the structure of
the decomposition, they do not uniquely specify the values of the different
terms. Therefore, we investigate additional properties such as strong symmetry
and left monotonicity. We find that strong symmetry is incompatible with the
properties proposed by Williams and Beer. Although left monotonicity is a very
natural property for an information measure it is not fulfilled by any of the
proposed measures.
We also study a geometric framework for information decompositions and ask
whether it is possible to represent shared information by a family of posterior
distributions.
Finally, we draw connections to the notions of shared knowledge and common
knowledge in game theory. While many people believe that independent variables
cannot share information, we show that in game theory independent agents can
have shared knowledge, but not common knowledge. We conclude that intuition and
heuristic arguments do not suffice when arguing about information.Comment: 20 page
Nesting behaviour influences species-specific gas exchange across avian eggshells
Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (GH2O) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell GH2O and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in GH2O has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between GH2O and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher GH2O than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher GH2O than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the GH2O are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher GH2O to overcome this constraint and still achieve optimal water loss during incubation. We also suggest that eggs laid in cup nests and burrows may require a higher GH2O to overcome the increased humidity as a result from the confined nest microclimate lacking air movements through the nest. Taken together, these comparative data imply that species-specific levels of gas exchange across avian eggshells are variable and evolve in response to ecological and physical variation resulting from parental and nesting behaviours
NASA follow-on to the Bangladesh Agro-Climatic Environmental Monitoring Project
The NASA responsibility and activities for the follow-on to the original Agro-Climatic Environmental Monitoring Project (ACEMP) which was completed during 1987 is described. Five training sessions which comprise the NASA ACEMP follow-on are: Agrometeorology, Meteorology of Severe Storms Using GEMPAK, Satellite Oceanography, Hydrology, and Meteorology with TOVS. The objective of the follow-on is to train Bangladesh Government staff in the use of satellite data for remote sensing applications. This activity also encourages the scientific connection between NASA/Goddard Space Flight Center and The Bangladesh Space and Remote Sensing Organization (SPARRSO)
Characteristic velocities of stripped-envelope core-collapse supernova cores
The velocity of the inner ejecta of stripped-envelope core-collapse
supernovae (CC-SNe) is studied by means of an analysis of their nebular
spectra. Stripped-envelope CC-SNe are the result of the explosion of bare cores
of massive stars ( M), and their late-time spectra are
typically dominated by a strong [O {\sc i}] 6300, 6363 emission
line produced by the innermost, slow-moving ejecta which are not visible at
earlier times as they are located below the photosphere. A characteristic
velocity of the inner ejecta is obtained for a sample of 56 stripped-envelope
CC-SNe of different spectral types (IIb, Ib, Ic) using direct measurements of
the line width as well as spectral fitting. For most SNe, this value shows a
small scatter around 4500 km s. Observations ( days) of
stripped-envelope CC-SNe have revealed a subclass of very energetic SNe, termed
broad-lined SNe (BL-SNe) or hypernovae, which are characterised by broad
absorption lines in the early-time spectra, indicative of outer ejecta moving
at very high velocity (). SNe identified as BL in the early phase
show large variations of core velocities at late phases, with some having much
higher and some having similar velocities with respect to regular CC-SNe. This
might indicate asphericity of the inner ejecta of BL-SNe, a possibility we
investigate using synthetic three-dimensional nebular spectra.Comment: 14 pages, 10 figures, MNRAS accepte
Linking Classical and Quantum Key Agreement: Is There "Bound Information"?
After carrying out a protocol for quantum key agreement over a noisy quantum
channel, the parties Alice and Bob must process the raw key in order to end up
with identical keys about which the adversary has virtually no information. In
principle, both classical and quantum protocols can be used for this
processing. It is a natural question which type of protocols is more powerful.
We prove for general states but under the assumption of incoherent
eavesdropping that Alice and Bob share some so-called intrinsic information in
their classical random variables, resulting from optimal measurements, if and
only if the parties' quantum systems are entangled. In addition, we provide
evidence that the potentials of classical and of quantum protocols are equal in
every situation. Consequently, many techniques and results from quantum
information theory directly apply to problems in classical information theory,
and vice versa. For instance, it was previously believed that two parties can
carry out unconditionally secure key agreement as long as they share some
intrinsic information in the adversary's view. The analysis of this purely
classical problem from the quantum information-theoretic viewpoint shows that
this is true in the binary case, but false in general. More explicitly, bound
entanglement, i.e., entanglement that cannot be purified by any quantum
protocol, has a classical counterpart. This "bound intrinsic information"
cannot be distilled to a secret key by any classical protocol. As another
application we propose a measure for entanglement based on classical
information-theoretic quantities.Comment: Accepted for Crypto 2000. 17 page
The high-energy pulsed X-ray spectrum of HER X-1 as observed with OSO-8
Her X-1 was observed from 1977 August 30 to September 10 using the High-Energy X-Ray Scintillation Spectrometer on board the OSO-8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. The pulsed spectrum was fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed gaussian centered at 55 keV. The latter fit has the smallest value of chi - squared per degree of freedom, and the resulting integrated line intensity is 1.5 superscript + 4.1 subscript - 1.4 x .001 photons s superscript-1 cm superscript-2 for a width of 3.1 superscript + 9.1 subscript -2.6 keV. This result, while of low statistical significance, agrees with the value observed by Trumper (1978) during the same On-state
- …