66 research outputs found
High-Resolution Molecular Epidemiology and Evolutionary History of HIV-1 Subtypes in Albania
HIV-1 epidemic in Western Europe is largely due to subtype B. Little is known about the HIV-1 in Eastern Europe, but a few studies have shown that non-B subtypes are quite common. In Albania, where a recent study estimated a ten-fold increase of AIDS incidence during the last six years, subtype A and B account for 90% of the know infections.We investigated the demographic history of HIV-1 subtype A and B in Albania by using a statistical framework based on coalescent theory and phylogeography. High-resolution phylogenetic and molecular clock analysis showed a limited introduction to the Balkan country of subtype A during the late 1980s followed by an epidemic outburst in the early 1990 s. In contrast, subtype B was apparently introduced multiple times between the mid-1970s and mid-1980s. Both subtypes are growing exponentially, although the HIV-1A epidemic displays a faster growth rate, and a significantly higher basic reproductive number R(0). HIV-1A gene flow occurs primarily from the capital Tirane, in the center of the country, to the periphery, while HIV-1B flow is characterized by a balanced exchange between center and periphery. Finally, we calculated that the actual number of infections in Albania is at least two orders of magnitude higher than previously thought.Our analysis demonstrates the power of recently developed computational tools to investigate molecular epidemiology of pathogens, and emphasize the complex factors involved in the establishment of HIV-1 epidemics. We suggest that a significant correlation exists between HIV-1 exponential spread and the socio-political changes occurred during the Balkan wars. The fast growth of a relatively new non-B epidemic in the Balkans may have significant consequences for the evolution of HIV-1 epidemiology in neighboring countries in Eastern and Western Europe
Drug-Associated Changes in Amino Acid Residues in Gag p2, p7\u3csup\u3eNC\u3c/sup\u3e, and p6\u3csup\u3eGag\u3c/sup\u3e/p6\u3csup\u3ePol\u3c/sup\u3e in Human Immunodeficiency Virus Type 1 (HIV-1) Display a Dominant Effect on Replicative Fitness and Drug Response
Regions of HIV-1 gag between p2 and p6Gag/p6Pol, in addition to protease (PR), develop genetic diversity in HIV-1 infected individuals who fail to suppress virus replication by combination protease inhibitor (PI) therapy. To elucidate functional consequences for viral replication and PI susceptibility by changes in Gag that evolve in vivo during PI therapy, a panel of recombinant viruses was constructed. Residues in Gag p2/p7NC cleavage site and p7NC, combined with residues in the flap of PR, defined novel fitness determinants that restored replicative capacity to the posttherapy virus. Multiple determinants in Gag have a dominant effect on PR phenotype and increase susceptibility to inhibitors of drug-resistant or drug-sensitive PR genes. Gag determinants of drug sensitivity and replication alter the fitness landscape of the virus, and viral replicative capacity can be independent of drug sensitivity. The functional linkage between Gag and PR provides targets for novel therapeutics to inhibit drug-resistant viruses
Drug-associated changes in amino acid residues in Gag p2, p7NC, and p6Gag/p6Pol in human immunodeficiency virus type 1 (HIV-1) display a dominant effect on replicative fitness and drug response
AbstractRegions of HIV-1 gag between p2 and p6Gag/p6Pol, in addition to protease (PR), develop genetic diversity in HIV-1 infected individuals who fail to suppress virus replication by combination protease inhibitor (PI) therapy. To elucidate functional consequences for viral replication and PI susceptibility by changes in Gag that evolve in vivo during PI therapy, a panel of recombinant viruses was constructed. Residues in Gag p2/p7NC cleavage site and p7NC, combined with residues in the flap of PR, defined novel fitness determinants that restored replicative capacity to the posttherapy virus. Multiple determinants in Gag have a dominant effect on PR phenotype and increase susceptibility to inhibitors of drug-resistant or drug-sensitive PR genes. Gag determinants of drug sensitivity and replication alter the fitness landscape of the virus, and viral replicative capacity can be independent of drug sensitivity. The functional linkage between Gag and PR provides targets for novel therapeutics to inhibit drug-resistant viruses
Δ9-Tetrahydrocannabinol (THC) enhances lipopolysaccharide-stimulated tissue factor in human monocytes and monocyte-derived microvesicles
Abstract Background Immunomodulatory effects in humans of Δ9−Tetrahydrocannabinol (THC), the psychoactive component of marijuana are controversial. Tissue factor (TF), the activator of the extrinsic coagulation cascade, is increased on circulating activated monocytes and is expressed on microvesicles released from activated monocytes during inflammatory conditions, which perpetuate coagulopathies in a number of diseases. In view of the increased medicinal use of marijuana, effects of THC on human monocytes and monocyte-derived microvesicles activated by lipopolysaccharide (LPS) were investigated. Findings Peak levels of TF procoagulant activity developed in monocytes or microvesicles 6 h following LPS treatment and were unaltered by THC. After 24 h of LPS stimulation, TF activity declined in control-treated or untreated cells and microvesicles, but persisted with THC treatment. Peak TF protein occurred within 6 h of LPS treatment independent of THC; by 24 h, TF protein declined to almost undetectable levels without THC, but was about 4-fold greater with THC. Steady-state TF mRNA levels were similar up to 2 h in the presence of LPS with or without THC, while 10-fold greater TF mRNA levels persisted over 3–24 h with THC treatment. Activation of MAPK or NF-κB pathways was unaltered by THC treatment and inflammatory cytokine IL-6 levels were unchanged. In contrast, TNF and IL-8 levels were enhanced by 20–50 %. Conclusions THC enhances TF expression in activated monocytes resulting in elevated procoagulant activity. Marijuana use could potentiate coagulopathies in individuals with chronic immune activation such as HIV-1 infection or inflammatory bowel disease
Recommended from our members
Centring the health of women across the HIV research continuum
Despite tremendous advances in HIV research, women and gender diverse people-particularly women from racial and ethnic groups under-represented in research, transgender women, and young women-remain disproportionately affected by HIV. Women and gender diverse people face unique challenges and have been under-represented in HIV research. The National Institutes of Health (NIH) is tasked to apply fundamental knowledge about the nature and behaviour of living systems to enhance health, lengthen life, and reduce disability. Rigorous exploration of-and interventions for-the individual, social, biological, structural, and environmental factors that influence HIV prevention, transmission, treatment, and cure is crucial to advance research for women, girls, and gender diverse people across the lifespan. In this Position Paper, we introduce a framework for an intersectional, equity-informed, data-driven approach to research on HIV and women and highlight selected issues for women and gender diverse people, including HIV prevention, HIV cure, ageing with HIV, substance use and misuse, violence, pregnancy, and breastfeeding or chestfeeding. This framework underlines a new HIV and Women Signature Programme from the NIH Office of AIDS Research and Office of Research on Women's Health that advances the NIH vision for women's health, in which all women receive evidence-based HIV prevention, treatment, and care across their lifespan tailored to their unique needs, circumstances, and goals. The time is now to centre the health of women, girls, and gender diverse people across the HIV research continuum
Biomarkers detected in cord blood predict vaccine responses in young infants
Introduction Factors influencing vaccine immune priming in the first year of life involve both innate and adaptive immunity but there are gaps in understanding how these factors sustain vaccine antibody levels in healthy infants. The hypothesis was that bioprofiles associated with B cell survival best predict sustained vaccine IgG levels at one year. Methods Longitudinal study of plasma bioprofiles in 82 term, healthy infants, who received standard recommended immunizations in the United States, with changes in 15 plasma biomarker concentrations and B cell subsets associated with germinal center development monitored at birth, soon after completion of the initial vaccine series at 6 months, and prior to the 12-month vaccinations. Post vaccination antibody IgG levels to Bordetella pertussis, tetanus toxoid, and conjugated Haemophilus influenzae type B (HiB) were outcome measures. Results Using a least absolute shrinkage and selection operator (lasso) regression model, cord blood (CB) plasma IL-2, IL-17A, IL-31, and soluble CD14 (sCD14) were positively associated with pertussis IgG levels at 12 months, while CB plasma concentrations of APRIL and IL-33 were negatively associated. In contrast, CB concentrations of sCD14 and APRIL were positively associated with sustained tetanus IgG levels. A separate cross-sectional analysis of 18 mother/newborn pairs indicated that CB biomarkers were not due to transplacental transfer, but rather due to immune activation at the fetal/maternal interface. Elevated percentages of cord blood switched memory B cells were positively associated with 12-month HiB IgG levels. BAFF concentrations at 6 and 12 months were positively associated with pertussis and HiB IgG levels respectively. Discussion Sustained B cell immunity is highly influenced by early life immune dynamics beginning prior to birth. The findings provide important insights into how germinal center development shapes vaccine responses in healthy infants and provide a foundation for studies of conditions that impair infant immune development
Expression, purification and preliminary X-ray crystallographic studies of the human immunodeficiency virus 1 subtype C protease
Crystals of the human immunodeficiency virus 1 subtype C protease complexed with indinavir and nelfinavir have been grown in the monoclinic space group P21 and shown to diffract X-rays to 2.3 Å resolution
- …