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en p2 and p6Gag/p6Pol, in addition to protease (PR), develop genetic diversity in
HIV-1 infected individuals who fail to suppress virus replication by combination protease inhibitor (PI)
therapy. To elucidate functional consequences for viral replication and PI susceptibility by changes in Gag
that evolve in vivo during PI therapy, a panel of recombinant viruses was constructed. Residues in Gag p2/
p7NC cleavage site and p7NC, combined with residues in the flap of PR, defined novel fitness determinants that
restored replicative capacity to the posttherapy virus. Multiple determinants in Gag have a dominant effect
on PR phenotype and increase susceptibility to inhibitors of drug-resistant or drug-sensitive PR genes. Gag
determinants of drug sensitivity and replication alter the fitness landscape of the virus, and viral replicative
capacity can be independent of drug sensitivity. The functional linkage between Gag and PR provides targets
for novel therapeutics to inhibit drug-resistant viruses.

© 2008 Elsevier Inc. Open access under CC BY-NC-ND license.
Introduction

Introduction in the mid 1990s of combination antiretroviral
therapy (ART) resulted in a dramatic decrease in the proportion of
HIV-infected individuals who progress to AIDS. However, resistant
viruses emerge as a result of several factors including the error-prone
nature of reverse transcriptase (Battula and Loeb, 1976) and
suboptimal levels of drugs due to poor adherence to therapeutic
regimens, differing bioavailablities of drugs, and anatomical or cellular
reservoirs inaccessible to drugs. Resistance, defined as diminished
susceptibility to a protease inhibitor (PI), involves accumulation and
persistence of multiple amino acid changes in the HIV-1 protease (PR)
gene (Erickson et al., 1999). Resistance to PI can be attributed to
multiple mechanisms. For example, polymorphisms in PR known to
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reduce or increase sensitivity to PI can occur in therapy-naive patients
(Brown et al., 1999; Lech et al., 1996; Leigh Brown et al., 2004;
Martinez-Picado et al., 2005; Perez et al., 2001; Rose et al., 1996). In
addition, as a result of suboptimal drug therapy, viruses begin to
accumulate mutations in PR in a stepwise fashion (Condra et al., 1996;
Erickson et al., 1999; Molla et al., 1996). The first PRmutations selected
in the presence of PI are primary, or major, mutations, which cause
resistance by lowering inhibitor affinity (Cote et al., 2001; Muzammil
et al., 2003), accompanied by a decrease in the replicative capacity of
the virus, due in part to inefficient processing by PR (Borman et al.,
1996; Croteau et al., 1997; Kaplan et al., 1994; Martinez-Picado et al.,
1999; Resch et al., 2005; Rose et al., 1996;Watkins et al., 2003; Zennou
et al., 1998). Secondary, or compensatory, mutations can be present
before therapy or appear in response to inhibitors and help to restore
the replicative capacity of the virus (Barrie et al., 1996; Doyon et al.,
1996; Kaplan et al., 1994; Nijhuis et al., 1999; Perez et al., 2001; Rose
et al., 1996; Shao et al., 1997; Zhang et al., 1997).

PR genotype is used to predict phenotypic drug resistance, and
various algorithms have been developed to identify reduced suscept-
ibility to inhibitors, particularly to determine transmission of drug
resistant viruses and to identify treatments that might suppress viruses
rebounding from an initial therapy (Johnson et al., 2007; Perez et al.,
2001; Shafer et al., 2007). Predictions of PR susceptibility or resistance
to inhibitors rely primarily on PR genotype, but are imperfect, in part
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because of the multiple mutations in PR that accumulate to increase
resistance, new inhibitors that select for novel combinations of
mutations, and cross resistance to different inhibitors that combinations
of mutations in PR can produce.

Novel amino acid substitutions accumulate in Gag and Gag-Pol
concomitant with PR mutations during suboptimal therapy and,
similar to PRmutations, persist over time. Changes develop in a subset
of the cleavage sites that serve as substrates for PR, as well as non-
cleavage site residues in p2, nucleocapsid (p7NC), and p6Gag/p6Pol

(Borman et al., 1996; Condra et al., 1995; Doyon et al., 1998; Erickson et
al., 1999; Gatanaga et al., 2002; Kaplan et al., 1994; Maguire et al.,
2002; Mammano et al., 1998; Markowitz et al., 1995; Martinez-Picado
et al., 1999; Molla et al., 1996; Rose et al., 1996; Zennou et al., 1998;
Zhang et al., 1997). Considerable evidence supports the functional
relationship between Gag and PR and the role that Gag sequences can
play in modulating pretherapy, wild-type PR activity (Bloom et al,
1998; Goodenow et al., 2002; Pettit et al., 2003; Pettit et al., 2005;
Verheyen et al., 2006). Drug-associated changes in Gag amino acid
residues may contribute to PR drug response and to viral fitness.
Although PR determinants of ex vivo viral fitness and drug response
are well characterized, contributions by mutations in Gag and Gag-Pol
to replicative capacity and PI susceptibility are less well defined. We
designed a study to assess the contribution of amino acid changes in
Gag, which developed in viruses in vivo during continued replication
in the presence of PI combination antiretroviral therapy, on viral
replicative capacity and drug sensitivity ex vivo in primary CD4 T
lymphocytes.

Results

Pre-and posttherapy gag-pol alleles

The pretherapy gag-pol region that predominated in the peripheral
blood 7 years prior to the initiation of ART differed by 23 amino acids
from the posttherapy region (Fig. 1). Nine of the 23 amino acid
changes evolved over 7 years in the absence of therapy, appeared as
the dominant population at baseline immediately prior to initiation of
ART, and persisted throughout the period of treatment. Amino acid
Fig. 1. Sequence alignment of pre- and posttherapy Gag-PR variants. (A) Gag p2, p7NC, and p
with lines above the sequence. Polymorphisms that developed over 7 years prior to ART ar
containing ART are shown in upper case. Filled circles designate cysteine and histidine resid
mutagenesis. Functional regions in p6Gag and PR are noted above the asterisks. Arrow deno
polymorphisms that accumulated before therapy were distributed
throughout the Gag-PR region and involved I376V within the p2/p7NC

cleavage site; K452R within the p1/p6Gag cleavage site; E464A and
P482T in p6Gag; R464S, G465R, and A482D in the overlapping p6Pol

reading frame; and M36I and T37N in PR (Fig. 1).
During 93 weeks of PI-containing ART, changes accumulated at

fourteen additional amino acid residues in Gag-PR. Although most
(10 of 14) developed during the first 6 months of ART, fewer than
half (6 of 14) of the amino acid changes occurred in PR (Fig. 1B).
Posttherapy PR differed from pretherapy PR in (V82A) or near the
active site (L10I and I15V), in the hinge (E34Q, M36I, and T37N), and
in the flap (I54A and Q58E). Similar to PR mutations, eight novel
amino acid substitutions in Gag-Pol also accumulated during the
course of treatment. The Gag-Pol substitutions included E398V within
the first zinc finger motif of p7NC; E458A, D484G, L487P (in the AIP-1
binding site) (Popov et al., 2008; Strack et al., 2003; von Schwedler
et al., 2003), andK494R (in theVPRbinding site) (Andersen et al., 2006;
Elder et al., 2000; He et al.,1995; Jowett et al.,1995; Poon et al.,1997; Re
et al., 1995) in p6Gag (Fig. 1A); and D437N (in p6Pol cleavage site) (Chen
et al., 2001; Lindhofer et al., 1995; Louis et al., 1998; Pettit et al., 2005;
Pettit et al., 2004; Pettit et al, 2003; Phylip et al., 1995), R458S, and
G471R in p6Pol (Fig. 1B). Specific mutations in the p7NC/p1 and p1/p6
cleavage sites occur in some treated individuals and can act to increase
the fitness of a resistant virus (Maguire et al., 2002; Mammano et al.,
1998; Zhang et al., 1997). In our cohort of more than 50 treated
individuals, the p7NC/p1 and p1/p6 cleavage sites, as well as the p24CA/
p2, p6Pol/PR, and PR/RT cleavage sites were highly conserved prior to
and following therapy (Barrie et al., 1996 and data not shown). In
contrast, the p2/p7NC cleavage site was polymorphic in nearly all
subjects within our cohort.

Replicative fitness and drug sensitivity of pre-and posttherapy viruses in
PBMC

Prior to construction of recombinant viruses, the PR genes from
pre-and posttherapy were shown to encode functional protease en-
zymes that processed the Gag polyproteins in vitro (Goodenow et al.,
2002; data not shown). When replicative capacity of the recombinant
6Gag sequences. (B) p6Pol and PR sequences. Gag and Gag-Pol cleavage sites are marked
e shown in lower case; amino acid changes that appeared during the 93 weeks of PI-
ues comprising the Zn finger motifs in p7NC. Asterisks denote amino acids targeted for
tes the catalytic aspartate residue at position 25 in PR.
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viruses with pre-or posttherapy alleles was assessed in parallel
infections of PBMC, the pretherapy recombinant virus replicated to
high levels compared to the posttherapy recombinant virus (Fig. 2A).
In general, over the course of 6 to 10 days in culture, replication by the
posttherapy virus achieved levels that were only about 10% to 20% of
replication levels by the pretherapy virus. To confirm relative fitness,
the viruses were tested in direct competition with each other. When
the pretherapy or posttherapy virus was cultured alone for 5 weeks as
a control, 100% of the viruses sequenced at the end of 1 and 5 weeks in
culturewere pretherapy or posttherapy virus, respectively (Fig. 2B, left
and right bars). When PBMC were coinfected by equal TCID50 of the
pre-and posttherapy viruses, the high fit pretherapy virus outgrew
completely the low fit posttherapy virus after 1week (data not shown)
and after 5 weeks (Fig. 2B, center striped bar).

Mutations at positions 10, 36, 54, and 82 in PR confer resistance to
RTV therapy, as well as cross resistance to IDV (Johnson et al., 2007),
demonstrating that the posttherapy PR developed genotypic resis-
tance in vivo consistent with the PIs administered. To directly evaluate
sensitivity for RTV or IDV, IC50 values for the pretherapy and
posttherapy recombinant viruses in PBMC from a series of indepen-
dent donors were determined. The posttherapy virus had a mean IC50

value of 5150 nM for RTV, 6-fold higher than the mean IC50 of 870 nM
for the pretherapy virus, and a mean posttherapy IC50 value of 200 nM
for IDV compared with a mean IC50 value of 30 nM for the pretherapy
virus. Overall, mean IC50 values for the pretherapy virus were about
15% to 18% of values for the posttherapy virus. Pre-and posttherapy
viruses displayed a direct relationship between PR genotypic and
phenotypic resistance to PIs, as well as an inverse relationship
between PI resistance and fitness in PBMC in the absence of PI.
Fig. 2. Replicative capacity of pre-and posttherapy Gag-PR recombinant viruses in PBMC
cultures. (A) Parallel infections. Filled circles represent the pretherapy virus and open
circles represent the posttherapy virus. Data represent mean and SEM of 7 independent
infections (⁎Pb 0.05). (B) Competitive infections. Proportion of virus clones (expressed
as percent of total clones) present after 5 passages in culture. Approximately 25–30
clones were sequenced for each infection. Striped bar, pretherapy virus; dotted bar,
posttherapy virus.
Differences in replicative capacity and drug sensitivity could
reflect in part an intrinsic difference between the drug-sensitive or
drug-resistant PR to process the Gag-Pol polyprotein. To examine
this possibility, Gag-Pol polyprotein processing by the PIsen and PIres

PR region was assessed in the presence or absence of PI in a cell-free
transcription/translation system. In the absence of PI, processing
between the PIsen and PIres PR variants was indistinguishable, while
including RTV or IDV in the reaction inhibited production of Gag
p24/p25 by the PIsen, but not the PIres PR (data not shown).

Strategy to restore fitness

To test a contribution by the amino acids in Gag to viral fitness, a
stepwise mutagenesis strategy that reverted, either alone or in
combination, the amino acids found in the posttherapy Gag-PR to
the residues present in the pretherapy Gag-PR was developed to
measure gain-of replicative capacity (Fig. 3). Because a strict timeline
for sequential accumulation of themutations in Gag-PR residues could
not be determined, selection of amino acid residues was based on
functional domains in Gag or PR. The first set of studies addressed the
potential role of the pretherapy residues in the p2/p7NC cleavage site
and p7NC in replication of a virus with posttherapy PR; the second set
of studies combined pretherapy p2/p7NC cleavage site and p7NC

residues with changes in posttherapy PR; and the final study
introduced changes at selected residues in p6Gag/p6Pol into the virus
with pretherapy p2/p7NC and PR sequences. A panel of 14 recombinant
viruses, including the pre-and posttherapy viruses, was evaluated for
replicative capacity in PBMC and for changes in sensitivity to RTV or
IDV.

Residues in p2/p7NC cleavage site and p7NC contribute to replication and
modulate PI sensitivity of a drug-resistant virus

To determine if p2/p7NC residues could modulate replicative
capacity, Viruses 1–3 combined pretherapy amino acid residues at
positions 376 and/or 398 in the p2/p7NC regionwith drug-resistant PR
alleles (Fig. 4). A change from valine to pretherapy isoleucine at
position 376 in p2/p7NC cleavage site (Virus 1) or valine to glutamic
acid at residue 398 in p7NC (Virus 2) produced little if any improved
replicative capacity compared to the posttherapy virus. In contrast,
combination of both pretherapy residues I376 and E398 in the same
viral genome (Virus 3) improved replication to levels that were about
four-fold above the posttherapy virus and about 50% of pretherapy
virus, indicating that residues in Gag p2 and p7NC combined to
contribute to replicative fitness.

To assess if residues 376 and/or 398 might also contribute to PI
response, IC50 values for RTV and IDV were determined (Fig. 4). In the
presence of RTV, Virus 1 and Virus 2 each displayed hypersensitivity
with IC50 levels that were almost a log-fold reduced relative to
pretherapy virus. Combining p2/p7NC cleavage site and p7NC pre-
therapy residues in Virus 3 partially restored drug response by either
of the single variants to levels similar to the pretherapy virus. In the
presence of IDV, Virus 1 was as sensitive as the pretherapy virus, Virus
2 displayed a level of sensitivity that was intermediate between the
pre-and posttherapy viruses, and Virus 3 maintained a fully resistant
phenotype to IDV, similar to the posttherapy virus. Results from this
series of experiments indicated that determinants localized outside PR
in p2/p7NC cleavage site and p7NC modulated response to PI by viruses
with genotypic and phenotypic drug resistant PR.

Residues in PR alter replicative fitness independent of PI sensitivity

Since pretherapy residues in p2/p7NC cleavage site and p7NC failed
to reconstitute full replicative capacity to the posttherapy virus, a role
for changes in PR to enhance replication by Virus 3 was examined
(Fig. 5). Changing the active site residue at position 82 from the



Fig. 3. Mutagenesis strategy to restore replicative capacity. The posttherapy Gag-PR recombinant virus was used as the backbone to introduce pretherapy residues into p2 and p7NC

(Virus 3). Virus 3 was then used as the backbone to introduce a series of pretherapy residues into PR (Virus 8). Virus 8 provided the backbone for the final mutations in the p6Gag AIP-1
binding site (p6Gag A), the p6Gag VPR binding site (p6Gag V), and p6Pol. Positions and their locations are noted above the constructs. The same designations appear in Figs. 4–6. Open
circles represent amino acids present in the posttherapy Gag-PR region and filled circles represent residues in the pretherapy Gag-PR region.
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posttherapy alanine to pretherapy valine produced Virus 5 which,
similar to Virus 3, replicated at about 50% of the wild-type pretherapy
virus, indicating no increased fitness advantage by V82. As expected,
V82 in PR reduced resistance to either RTV or IDV by Virus 5 to about
50% of posttherapy levels.

Pretherapy amino acid residues in the near active site (positions 10
and 15) combined with the active site (residue 82) in Virus 6 failed to
improve replication compared with posttherapy virus and actually
suppressed the positive replicative effect by pretherapy p2/p7NC alone
(Fig. 5). Combining pretherapy amino acid residues in the PR hinge
(residues 34, 36, and 37) and flap (residues 54 and 58) regions in Virus
7 also failed to restore any replicative capacity to the posttherapy
virus. While pretherapy residues in the active site or the hinge/flap
regions provided no improvement in replication, Viruses 6 and 7 each
showed reduced resistance to PI with IC50 values similar to the pre-
therapy virus.

Introducing pretherapy amino acids into the PR flap residues of
Virus 3 produced Virus 4, which displayed enhanced replicative
capacity that was almost two-fold greater than Virus 3 and 85% of the
level of pretherapy virus (Fig. 5). Results identify positions in the flap
Fig. 4. Replicative capacity and PI sensitivity of p2 and p7NC revertants. Representations of vir
posttherapy virus and filled circles represent amino acids identical to the pretherapy virus. V
mean and SEM of 6 independent experiments (⁎Pb0.001, ⁎⁎P=0.006). IC50 values for ritonav
shown in the last two columns on the right. Actual IC50 values for RTV are as follows: Prethe
IC50 values for IDV are: Pretherapy, 30 nM; Posttherapy, 200 nM; Virus 1, 40 nM; Virus 2, 11
of PR, in combination with p2/p7NC, as fitness determinants. In
contrast to increased replication, changes in the flap of PR in Virus 4
produced dichotomous responses to PIs. Compared with Virus 3 and
the posttherapy virus, Virus 4 was more sensitive to RTV, but as
resistant to IDV. Results indicate that replication fitness does not
necessarily correlate with susceptibility to PI.

Residues in p6Gag and p6Pol contribute to PI hypersensitivity

A role for the multiple amino acid changes in p6Gag/p6Pol that
accumulated prior to and during PI treatment in further enhancement
of replicative capacity was evaluated. The posttherapy p6Gag/p6Pol

region was combined with pretherapy p2/p7NC and PR in Virus 8,
which displayed a level of replication equivalent to the pretherapy
virus, indicating little, if any contribution by the combination of
residues in p6Gag/p6Pol to replicative capacity (Fig. 6). To determine if
individual positions in p6Gag/p6Pol could modulate replication,
selected residues (487P and 494R in Gag and 437N in Pol) were
changed, alone or in combination, to the pretherapy amino acids L, K,
or D, respectively (refer to Fig. 1). Single substitutions in Viruses 9, 10
al constructs are shown on the left. Open circles indicate resides that are identical to the
iral replication on day 8 is expressed as a percent of the pretherapy virus. Data represent
ir (RTV) and indinavir (IDV) are expressed as a percent of the posttherapy virus, and are
rapy, 870 nM; Posttherapy, 5150 nM; Virus 1, 130 nM; Virus 2, 60 nM; Virus 3, 1650 nM.
0 nM; Virus 3, 260 nM.



Fig. 5. Replicative capacity and PI sensitivity of PR revertants. Designations are the same as described for Fig. 4. Data represent mean and SEM of 3 independent experiments
(†Pb0.05). Actual IC50 values for RTV are as follows: Pretherapy, 870 nM; Posttherapy, 5150 nM; Virus 4, 690 nM; Virus 5, 3150 nM; Virus 6, 590 nM; Virus 7, 450 nM. IC50 values for
IDV are: Pretherapy, 30 nM; Posttherapy, 200 nM; Virus 4, 220 nM; Virus 5, 80 nM; Virus 6, 30 nM; Virus 7, 30 nM.
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and 11 failed to alter replicative capacity relative to pretherapy virus,
while combining the three pretherapy amino acid residues in the
background of posttherapy p6Gag/p6Pol diminished replication by
Virus 12 to levels that were about 70% of the pretherapy virus.

When responses to PI were evaluated, this series of recombinant
viruses displayed significant hypersensitivity to both IDV and RTV
compared with the pretherapy virus (Fig. 6). Virus 8 was reduced by
about eight-fold in sensitivity to RTV or about two-fold to IDV, relative
to pretherapy virus. More striking results were the IC50 values
displayed by Viruses 9, 10, 11, or 12, which were almost two logs
lower than pretherapy virus for RTV, or decreased by three-to five-fold
for IDV relative to the pretherapy virus. Although combinations of
residues in p6Gag/p6Pol had limited effect on replicative capacity
relative to the pretherapy virus, residues in this region enhanced
pretherapy PR sensitivity to inhibitors.

Phenotypic drug response can be independent of PR genotype or
replicative capacity

The relationship between replicative capacity and drug suscept-
ibility characteristics among the viruses was displayed in a fitness
landscape (Fig. 7). Pretherapy and posttherapy recombinant viruses
defined the upper and lower boundaries, respectively, of replication
Fig. 6. Replicative capacity of p6Gag and p6Pol revertants. Designations are the same as describ
in triplicate (†Pb0.05). Actual IC50 values for RTV are as follows: Pretherapy, 870 nM; Postthe
10 nM. IC50 values for IDV are: Pretherapy, 30 nM; Posttherapy, 200 nM; Virus 8, 20 nM; Vi
capacity in the fitness landscape. In contrast, while the posttherapy
virus defined the upper limit of drug resistance to RTV, Viruses 3 and 4
were more resistant to IDV than the posttherapy virus. Furthermore,
the pretherapy virus failed to define the lower limit of sensitivity to
either RTV or IDV. With few exceptions, any change in Gag increased
sensitivity to PI to levels that were well-below the levels displayed by
the pretherapy virus. Viruses 8–12 with p2/p7NC and PR regions
identical to the pretherapy virus moved in the fitness landscape
toward increased sensitivity to inhibitors by virtue of single amino
acid changes in p6Gag/p6Pol. A striking result was that Viruses 1, 2, and
3, with p6Gag/p6Pol and drug-resistant PR genes identical to the
posttherapy virus, moved in the fitness landscape based solely on
limited changes in Gag. Overall, changes in phenotypic drug response
could be disconnected from either replicative capacity or PR genotype.

Discussion

HIV-1 PR activity is targeted to and intimately linked with
substrates in the Gag and Gag-Pol polyprotein. Determinants within
PR that alter enzymatic activity and contribute to replicative fitness of
the virus in the presence and absence of a variety of protease
inhibitors are well defined (Clemente et al., 2004; Croteau et al., 1997;
Liu et al., 2006; Mahalingam et al., 1999; Mammano et al., 2000;
ed for Fig. 4. Data represent mean and SEM of two independent experiments performed
rapy, 5150 nM; Virus 8, 170 nM; Virus 9, 10 nM; Virus 10, 9 nM; Virus 11, 9 nM; Virus 12,
rus 9, 11 nM; Virus 10, 10 nM; Virus 11, 5 nM; Virus 12, 12 nM.



Fig. 7. Viral fitness and inhibitor sensitivity can bemodulated independently by sequences in Gag. Viral replication is expressed as a percent of the pretherapy virus and PI resistance is
expressed as a percent of the posttherapy virus. Circles (Viruses 1–3) indicate viruses with PR sequences identical to posttherapy (Post) virus. Squares (Viruses 8–12) indicate viruses
with PR sequences identical to pretherapy genotypic sensitive PR allele (Pre). Triangles (Viruses 4–7) indicate viruses with partial genotypic resistant PR alleles. Shaded symbols
indicate differences based on inhibitor.
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Martinez-Picado et al., 1999; Molla et al., 1996; Muzammil et al., 2003;
Myint et al., 2004; Nijhuis et al., 1999; Resch et al., 2005;Watkins et al.,
2003; Zhang et al., 1997). In our study, PR developed in vivo genotypic
changes that conferred phenotypic resistance to RTV and IDV, PIs
administered sequentially as part of combination therapies. An
unexpected finding from our studies is that Gag can be a dominant
modulator of PR drug resistant phenotype and increase drug
susceptibility of a genotypic and phenotypic drug-resistant virus.

Residues in Gag cleavage sites can evolve in vivo during incomplete
suppression of virus replication by PI-containing antiretroviral
therapies (Feher et al., 2002; Kolli et al., 2006; Malet et al., 2007;
Mammano et al., 1998; Verheyen et al., 2006) and contribute to
phenotypic drug resistance and replication in vitro (Maguire et al.,
2002; Mammano et al., 1998; Yates et al., 2006; Zhang et al., 1997).
However, highly resistant viruses without cleavage site mutations
occur (Gatanaga et al., 2002), and in our cohort, cleavage sites, other
than the p2/p7NC cleavage site, were not variable. This study shows
that mutations in the p2/p7NC cleavage site can act in a compensatory
manner in the absence of changes at other cleavage sites, such as p7NC/
p1 and p1/p6, demonstrating that there are multiple ways to achieve
the same phenotype with different cleavage site mutations.

PI treatment-related changes did accumulate outside the cleavage
sites in Gag, similar to other studies, although a genotypic profile for
Gag determinants that modulate replicative capacity or drug response
is not well defined (Doyon et al., 1998; Gatanaga et al., 2002;
Mammano et al., 1998; Zhang et al., 1997). The number of unique
residues that developed in Gag and Pol outside the cleavage sites
during antiretroviral therapy in our study led us initially to consider
that the changes could contribute to enhanced fitness of the virus.
Even though every possible combination of amino acid differences
between pre-and posttherapy Gag-PR regions in our study was not
examined, a key to defining novel fitness determinants that could fully
restore the reduced replicative capacity of the posttherapy virus to
levels displayed by the pretherapy virus, was assessment of combina-
tions of residues, rather than single amino acids. Fitness determinants
are complex, discontinuous, and context dependent, raising the
possibility that additional determinants might be identified by
assessing alternative combinations of residues. In our previous
studies, polymorphisms in Gag p7NC and PR were found to modulate
wild-type PR processing activity and diminish replicative fitness of
therapy naive viruses (Bloom et al., 1998; Goodenow et al., 2002). The
current studies implicate the same regions of p7NC as fitness
determinants in the context of drug-resistant PR.

Replicative fitness alone accounts for the function of only a subset
of the drug-associated changes in Gag and Pol, although fitness can be
associated with drug responsiveness. For example, drug resistance by
awild type PR is increased by substitutions that map exclusively in the
p7NC/p1 cleavage site (Nijhuis et al., 2007), while wild type PR among
viruses from therapy naive individuals display hypersusceptibility to
PI (Leigh Brown et al., 2004; Martinez-Picado et al., 2005) The Gag
mutations identified in our study accumulated concomitantly with PR
mutations in the presence of PI and persisted over time, similar to
characteristics of amino acid residues in PR that confer drug
resistance. Indeed, the predominant effect for most of the drug-
associated amino acid substitutions in Gag-Pol in our study was to
enhance resistance to inhibitors, as any reversions to pretherapy
residues increased drug sensitivity. Protease inhibitor drug resistant
viruses are less fit than wild-type viruses in the absence of
antiretrovirals, with an inverse relationship between level of response
to drug and replicative capacity in the absence of inhibitor (Coffin,
1995; Croteau et al., 1997; Harrigan et al., 1998; Martinez-Picado et al.,
1999; Rose, 2002; Stoddart et al., 2001). Our study shows that viral
replicative capacity can be independent of drug sensitivity.

If PR genotype alone were sufficient to predict the drug response
phenotype of virus, then viruses with identical PR sequences should
have identical resistance to PI. Yet, PR genotypewas a poor predictor of
drug resistance for the variants that were tested in this study. Viruses
with identical PR genes failed to exhibit similar phenotypes because of
complex determinants that required combinations of amino acid
residues in regions of Gag or Gag-Pol. PR with resistance mutations
can exhibit differential susceptibility to inhibitors (Gonzalez et al.,
2003; Resch et al., 2005), but differential sensitivity to inhibitor
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modulated by Gag is a novel finding. In our study, differential
sensitivity to RTV or IDV was conferred to a virus with a genotypic
and phenotypic resistant PR gene by a single amino acid residue in Gag
p2 or p7NC. One potential explanation for the discordance in drug
sensitivities could be related to the PIs affinity for P-glycoprotein (P-
gp). PIs are known substrates of P-gp (Kim et al., 1998; Lee et al., 1998),
and recent studies in our lab indicate that different PIs have different
affinities for P-gp (Ho et al., unpublished). P-gp acts to pump PIs out of
the cell, so a PI with a higher affinity for P-gp will be pumped out at a
greater rate, resulting in a lower intracellular concentration of that PI.
Although RTV and IDV have the samemechanism of action and bind in
the active site of PR, changes in Gag-PR can alter sensitivity to one PI,
but not the other, suggesting that Gag-PR interactions outside the
active site may represent novel drug targets. Directing a drug to a
region outside the active site that interferes with protein-protein
interactions may produce an alternative inhibitory effect. Suscept-
ibility of pretherapy PR to inhibitor was enhanced significantly by
single amino acids in p6Gag or p6Pol. Furthermore, differences between
the pretherapy virus and Virus 12 in IC50 values particularly for RTV
indicate that additional residues in the p6Gag/p6Pol region contribute
to PI sensitivity. The p6Gag/p6Pol sites examined in our study were
chosen based on known functional activity and were sufficient to
restore replicative capacity to the posttherapy virus. Yet, ten
additional amino acid residues in Gag or Gag-Pol differed between
the pretherapy virus and Virus 12, which enhanced susceptibility to PI
by wild type PR. These data underscore the necessity to examine
regions upstream of PR for predictive sequences that, in combination
with PR, will enhance genotype predictions and modulate phenotypic
assays of drug susceptibility.

Gag proteins, particularly in p7NC and p6Gag, are multifunctional
proteins that modulate multiple facets of the virus life-cycle and
interactions with host cell proteins (Andersen et al., 2006; Berthoux et
al., 1997; Buckman et al., 2003; Burnett and Spearman, 2007; Dorfman
et al., 1993; Elder et al., 2000; Goodenow et al., 2002; He et al., 1995;
Jowett et al., 1995; Poon et al., 1997; Poon et al., 1996; Popov et al.,
2008; Re et al., 1995; Strack et al., 2003; Thomas et al., 2006; von
Schwedler et al., 2003). While mechanisms for increased sensitivity to
inhibitors by drug-associated changes in Gag could be mediated
through changes in diverse Gag functions, the predicted consequences
would be diminished fitness, rather than hypersensitivity to drugs
(Gatanaga et al., 2002). We favor a model that more directly explains
the results: Gag-PR is a functional unit, and interactions between Gag
and PR are required for PR processing of Gag in virion maturation. The
functional interactions between Gag and PR predict that mutations in
Gag would cause conformational changes that modulate interactions
between active site and substrate. Taken together, our results define a
dominant effect by Gag on fitness and drug resistance, as well as a
functional interrelationship among the regions of Gag-PR, and suggest
that novel therapeutics could be designed to disrupt these
interactions.

Methods

Construction of replication competent gag-pol recombinant viruses

Replication competent recombinant viruses containing selected
gag-pol alleles were constructed as described previously (Rose, 2002).
Briefly, themolecular clone pLAI.2 (Peden et al., 1991) wasmodified by
site-directed mutagenesis to remove the SpeI restriction site at
nucleotide position 7 to produce the molecular clone pLAI.4. pLAI.4
was then digested with the restriction enzymes SpeI (HIVLAI position
1553, New England Biolabs, Inc, Beverly, MA, NEB) and Bstz17I (HIVLAI

position 3011, NEB) to remove the LAI gag-pol region, and a 1.5 kb
fragment amplified from patient samples was inserted into the pLAI.4
backbone. Recombinant viruses were made with gag-pol alleles
obtained from an HIV-infected pediatric subject (D1) enrolled in a
protocol to examine the impact of HIV-1 genotype on therapy
outcome. The gag-pol alleles were isolated from serial blood samples
obtained over 7 years before therapy initiation (pretherapy) and after
the development of multiple drug resistance following 77 weeks of
initial combination therapy including ritonavir (RTV) and an addi-
tional 16 weeks of treatment with indinavir (IDV)-containing an-
tiretroviral therapy (posttherapy). The pretherapy allele was referred
to previously as D1.10 (Barrie et al., 1996; Goodenow et al., 2002).
Subject D1 is currently alive after 18 years of infection.

Production of virus stocks and PBMC infections

Virus stocks were generated by transfection of HEK293 cells
(Graham et al., 1977) as described previously (Goodenow et al., 2002),
and TCID50 values were calculated using the Spearman–Karber
method (Division of AIDS, 1997). For parallel infections, phytohema-
glutinin (PHA)-stimulated PBMC were infected with 1500 TCID50 of
virus stock per 1.2×106 cells (Goodenow et al., 2002). Supernatants
(20 µL aliquots) were harvested every 2 days for 10 days, concurrent
with a 10% media change. Supernatant p24 antigen levels were
determined by the HIV-1 p24 Antigen Assay ELISA (Beckman Coulter,
Fullerton, CA) following the manufacturer's protocol. For competition
experiments that consisted of 5 one-week passages, 5×106 PBMCwere
infected with two viruses, each at 2000 TCID50. At the end of each
passage, supernatant p24 antigen levels were determined, DNA was
extracted from the cells for sequence analysis, and 1 ml of syringe
filtered (0.45 μmAcrodisc) supernatant was used to infect a new batch
of PBMC from the same donor.

Sequence analysis

Cells were lysed with Proteinase K (Fisher Scientific, Pittsburgh,
PA), and the DNAwas isolated using the QiaAmp® DNA BloodMini Kit
(Qiagen) following manufacturer's protocol. The gag-PR region was
amplified using two rounds of PCR. First round amplification was
performed with forward primer Gag 7 (5'-GTTAAAAGAGACCATCAAT-
3', nucleotides 1389–1407) and reverse primer Pol 4 (5'-TCCTACATA-
CAAATCATCC-3', nucleotides 3101–3119), followed by second round
with nested primers G100 (forward, 5'-TAGAAGAAATGATGACAG-3',
nucleotides 1817–1834) and Pol I (reverse, 5'-ACTTTTGGGCCATC-
CATTCCTGGC-3', nucleotides 2588–2611). Amplifications were per-
formed in a 96-well GeneAmp® PCR System 9700 (Applied
Biosystems, Foster City, CA) and consisted of an initial denaturation
at 94 °C for 10 min, 35 cycles of denaturation at 94 °C for 1 min,
annealing at 55 °C for 1 min, and extension at 72 °C for 2 min, with a
final elongation for 10 min at 72 °C. Amplified products were cloned
using the TOPO TA Cloning® Kit (Invitrogen) and transformed into
TOP10F' competent cells (Invitrogen). Recombinant plasmids were
purified using the QIAprep DNA Miniprep Kit (Qiagen), and the
presence of an insert was confirmed by restriction digest. Sequences
were prepared with DYEnamic ET dye terminator cycle sequencing kit
for MegaBACE DNA Analysis Systems (GE Healthcare, Chalfont St.
Giles, United Kingdom) and run on a MegaBACE 1000 (GE Healthcare)
in the Genome Sequencing Service Laboratory at the University of
Florida.

Site directed mutagenesis

To prepare for mutagenesis, a 1.7 kb gag-pol fragment was digested
from the pLAI.4-posttherapy gag-pol recombinant virus using the
restriction enzymes SphI (NEB) and EcoRV (NEB) and ligated into the
pGEM5Zf+ cloning vector (Promega, Madison, WI) that was previously
digested with SphI and EcoRV and treated with calf intestinal alkaline
phosphatase (CIAP, Promega). Following transformation of DH5α cells
(Invitrogen, Carlsbad, CA), ten clones were picked, grown overnight at
37 °C, and plasmid DNAwas extracted using a QIAprep™Miniprep Kit



Table 1
Mutagenesis primers

Primer
name

HXB2
positions

Primer sequence (5'–3')

CSITE1 1979–2013 GCACCAATTCACAGATCATAATGATGCAGAAAGGC
NC 2052–2076 TTGTGGCAAAGAGGGGCACATAGCC
A 2355–2388 CGACCCCTCGTCACAATAAAGATAGGGGGACAGC
B 2421–2464 GATACAGTATTAGAAGAAATGACTTTGACAGGAAGATGGAAACC
C 2475–2517 GGGGGAATTGGAGGTTTTATCAAAGTAAGACAGTATGATCAGG
D 2562–2593 GTAGGACCTACACCTGTCAACATAATTGGAAG
E 2161–2199 GCTAATTTTTTAGGGAAGATCTGGCCTTCCTACAAGGGG
F 2304–2335 GATAGGCAAGGAACTGTATCCCTTAGCTTCCC
G 2323–2352 CCCTTAGCTTCCCTCAAATCACTCTTTGGC
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(Qiagen, Valencia, CA) following the manufacturer's protocol. Inser-
tion of the gag-pol fragment was confirmed by restriction digest using
SpeI and BstZ17I.

The QuikChange®Multi Site-DirectedMutagenesis Kit (Stratagene,
La Jolla, CA) and primers in Table 1 were used to introduce specific
mutations into the gag-pol region. Primer CSITE1 was used to convert
a valine to an isoleucine in p2 (within the p2/p7NC cleavage site) (Virus
1), and primer NC1 was used to mutate valine to glutamic acid in p7NC

(Virus 2). To produce Virus 3, primer NC1 was used on Virus 1.
Additional mutations were introduced into the protease region of

Virus 3. Primer A was used to mutate position 10 from isoleucine to
leucine and position 15 from valine to isoleucine. Primer B was
designed to mutate position 34 from glutamine to glutamic acid,
position 36 from isoleucine to methionine, and position 37 from
asparagine to threonine. Primer Cmutated position 54 from alanine to
isoleucine and position 58 from glutamic acid to glutamine (Virus 4),
and Primer D changed position 82 from alanine to valine (Virus 5).
Primers A and Dwere combined in the same reaction to produce Virus
6, primers B and C together produced Virus 7, while Virus 8 was
produced by using primers A and D on Virus 7.

The constructwhich contained both the p2 and p7NCmutations and
all 8 protease mutations (Virus 8) was then used as the backbone for
mutagenesis of p6Gag and p6Pol using primers E, F, and G. Primer E was
used tomutate the fifth amino acid of p6Pol from asparagine to aspartic
acid (Virus 9). Primer F mutated a proline to a leucine in the AIP-1
binding site in p6Gag (Virus 10) and Primer G changed an arginine to a
lysine in the VPR binding site in p6Gag (Virus 11). All three mutations
were combined in the genome of Virus 12. Themutations in the codons
were engineered to change selectively the aminoacids in either theGag
or Pol reading frame without changing the alternative reading frame.

The mutagenic primers, reaction buffer, and QuikChange® Multi
enzyme blend were added to the pGEM5Zf+ template DNA with
appropriate target sequences following manufacturer's protocol.
Thermal cycling conditions consisted of an initial denaturation at
95 °C for 1 min, followed by 30 cycles of denaturation at 95 °C for
1 min, annealing at 55 °C for 1 min, and extension at 65 °C for 9 min.
Mutagenesis was confirmed by sequencing using ABI Prism BigDye
terminator cycle sequencing and ABI Prism 377XL automated
sequence instrumentation (Perkin-Elmer, Wellesley, MA). Gag-pol
regions were digested from pGEM5Zf+ with SpeI and Bstz17I and
ligated into the pLAI.4 backbone for construction of replication
competent virus stocks, as described above. Sequences have been
submitted to GenBank with accession numbers pending.

Determination of IC50

Indinavir and ritonavir were obtained from the NIH AIDS Research
and Reference Reagent Program (McKesson BioServices Corporation,
Germantown, MD). Following PBMC stimulation with PHA and virus
infection, IDV or RTV was added to the culture to achieve final
concentrations ranging between 101 and 105 nM. IDV or RTV was
added during media changes to maintain PI concentration for the
entire length of the infection. Virus replication was determined by
measuring supernatant p24 antigen and IC50 values were calculated
with a nonlinear regression analysis using the GraphPad Prism 4.03
software package (GraphPad Software, Inc., San Diego, CA).

Statistical analysis

Statistical analysis was performed using SigmaStat 3.0 software
(Jandel Scientific Corp, San Rafael, CA). Differences between the
replication of pre-and posttherapy viruses were tested with t-tests. A
P value of b0.05 was considered significant.

In vitro transcription/translation for Gag-Pol processing

The LAI gag-pol sequence was amplified using forward primer 5'-
GGTTTCTCGAGCGGAGGCTAGAAGGAGAGAGA-3', and reverse primer
5'-TTCCCTCTAGACCCCTAGCTTTCCCTGAAACA-3' engineered to insert
an XhoI restriction site at the 5' end and an XbaI at the 3' end of the
sequence for directional cloning into the expression vector TNT. A
region in LAI gag-pol extending from SpeI in p24CA to BstZ17I in
reverse transcriptase (nucleotides 1507 to 2924) was exchanged with
the SpeI to BstZ17I gag-pol fragments. To obtain efficient production of
the Gag-Pol polyprotein, a continuous gag-pol open reading framewas
created by site-directed mutagenesis (Stratagene) to reproduce
exactly the amino acid sequences of the Gag-Pol proteins found in
virions. The primers used were: forward 5'-GAGAGACAGGC-
TAACTTCCTCCGCGAAGACTTGGCCTTCCTACAAGGG-3' and reverse 5'-
CCCTTGTAGGAAGGCCAAGTCTTCGCGGAGGAAGTTAGCCTGTCTCTC-5'
and the products were verified by sequencing.

For in vitro transcription/translation reactions, purified plasmid DNA
template (600 ng/μl) wasmixed with a solution containing 20 μl TNT T7
QuickMasterMix (Promega) that contained rabbit reticulocte lysate and
a mixture of all the amino acids except methionine, 1 μl 35S-Met
(1000 Ci/mmol at 10 mCi/ml) and nuclease-free water up to 25 μl final
volume, and incubated at 30 °C. PIs were added at a final concentration
of 10 µM. Samples were taken at 0 and 4 h, quenched with 2× Laemmli
Sample Buffer (BioRad), heated for 3 min at 85 °C and run on a precast
10–20% Tris-HCl SDS-PAGE Criterion gel (BioRad). Gels were fixed,
soaked in 10% glycerol solution for 5 min, dried, and exposed to either a
XAR-5 film (Kodak) or a phosphor-screen at room temperature for 12 to
24 h. Amount of labeled proteinwas quantified by scanning the screens
using a Storm 860 Molecular Dynamics PhosphorImager.
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