45 research outputs found

    Investigation of the use of a sensor bracelet for the presymptomatic detection of changes in physiological parameters related to COVID-19: an interim analysis of a prospective cohort study (COVI-GAPP).

    Get PDF
    OBJECTIVES We investigated machinelearningbased identification of presymptomatic COVID-19 and detection of infection-related changes in physiology using a wearable device. DESIGN Interim analysis of a prospective cohort study. SETTING, PARTICIPANTS AND INTERVENTIONS Participants from a national cohort study in Liechtenstein were included. Nightly they wore the Ava-bracelet that measured respiratory rate (RR), heart rate (HR), HR variability (HRV), wrist-skin temperature (WST) and skin perfusion. SARS-CoV-2 infection was diagnosed by molecular and/or serological assays. RESULTS A total of 1.5 million hours of physiological data were recorded from 1163 participants (mean age 44±5.5 years). COVID-19 was confirmed in 127 participants of which, 66 (52%) had worn their device from baseline to symptom onset (SO) and were included in this analysis. Multi-level modelling revealed significant changes in five (RR, HR, HRV, HRV ratio and WST) device-measured physiological parameters during the incubation, presymptomatic, symptomatic and recovery periods of COVID-19 compared with baseline. The training set represented an 8-day long instance extracted from day 10 to day 2 before SO. The training set consisted of 40 days measurements from 66 participants. Based on a random split, the test set included 30% of participants and 70% were selected for the training set. The developed long short-term memory (LSTM) based recurrent neural network (RNN) algorithm had a recall (sensitivity) of 0.73 in the training set and 0.68 in the testing set when detecting COVID-19 up to 2 days prior to SO. CONCLUSION Wearable sensor technology can enable COVID-19 detection during the presymptomatic period. Our proposed RNN algorithm identified 68% of COVID-19 positive participants 2 days prior to SO and will be further trained and validated in a randomised, single-blinded, two-period, two-sequence crossover trial. Trial registration number ISRCTN51255782; Pre-results

    A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the remote early detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial

    Get PDF
    Abstract Objectives It is currently thought that most—but not all—individuals infected with SARS-CoV-2 develop symptoms, but that the infectious period starts on average two days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests [to determine if there are antibodies against the SARS-CoV-2 in the blood] or SARS-CoV-2 infection tests such as polymerase chain reaction [PCR] or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the following two algorithms to detect first time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava bracelet data when coupled with self-reported Daily Symptom Diary data (Wearable + Symptom Data Algo; experimental condition) the algorithm using self-reported Daily Symptom Diary data alone (Symptom Only Algo; control condition) In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. Trial design The trial is a randomized, single-blinded, two-period, two-sequence crossover trial. All subjects will participate in an initial Learning Phase (varying from 2 weeks to 3 months depending on enrolment date), followed by two contiguous 3-month test phases, Period 1 and Period 2. Each subject will undergo the experimental condition (the Wearable + Symptom Data Algo) in one of these periods and the control condition (Symptom Only Algo) in the other period. The order will be randomly assigned, resulting in subjects being allocated 1:1 to either Sequence 1 (experimental condition first) or Sequence 2 (control condition first). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. Participants The trial will be conducted in the Netherlands. A target of 20,000 subjects will be enrolled. Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. This results in approximately 6,500 normal-risk individuals and 3,500 high-risk individuals per sequence. Subjects will be recruited from previously studied cohorts as well as via public campaigns and social media. All data for this study will be collected remotely through the Ava COVID-RED app, the Ava bracelet, surveys in the COVID-RED web portal, and self-sampling serology and PCR kits. During recruitment, subjects will be invited to visit the COVID-RED web portal ( www.covid-red.eu ). After successfully completing the enrolment questionnaire, meeting eligibility criteria and indicating interest in joining the study, subjects will receive the subject information sheet and informed consent form. Subjects can enrol in COVID-RED if they comply with the following inclusion and exclusion criteria. Inclusion criteria: Resident of the Netherlands At least 18 years old Informed consent provided (electronic) Willing to adhere to the study procedures described in the protocol Must have a smartphone that runs at least Android 8.0 or iOS 13.0 operating systems and is active for the duration of the study (in the case of a change of mobile number, study team should be notified) Be able to read, understand and write Dutch Exclusion criteria: Previous positive SARS-CoV-2 test result (confirmed either through PCR/antigen or antibody tests; self-reported) Previously received a vaccine developed specifically for COVID-19 or in possession of an appointment for vaccination in the near future (self-reported) Current suspected (e.g., waiting for test result) COVID-19 infection or symptoms of a COVID-19 infection (self-reported) Participating in any other COVID-19 clinical drug, vaccine, or medical device trial (self-reported) Electronic implanted device (such as a pacemaker; self-reported) Pregnant at time of informed consent (self-reported) Suffering from cholinergic urticaria (per the Ava bracelet’s User Manual; self-reported) Staff involved in the management or conduct of this study Intervention and comparator All subjects will be instructed to complete the Daily Symptom Diary in the Ava COVID-RED app daily, wear their Ava bracelet each night and synchronise it with the app each day for the entire period of study participation. Provided with wearable sensor and/or self-reported symptom data within the last 24 hours, the Ava COVID-RED app’s underlying algorithms will provide subjects with a real-time indicator of their overall health and well-being. Subjects will see one of three messages, notifying them that: no seeming deviations in symptoms and/or physiological parameters have been detected; some changes in symptoms and/or physiological parameters have been detected and they should self-isolate; or alerting them that deviations in their symptoms and/or physiological parameters could be suggestive of a potential COVID-19 infection and to seek additional testing. We will assess intraperson performance of the algorithms in the experimental condition (Wearable + Symptom Data Algo) and control conditions (Symptom Only Algo). Main outcomes The trial will evaluate the use and performance of the Ava COVID-RED app and Ava bracelet, which uses sensors to measure breathing rate, pulse rate, skin temperature, and heart rate variability for the purpose of early and asymptomatic detection and monitoring of SARS-CoV-2 in general and high-risk populations. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests, PCR tests and/or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for each of the following two algorithms to detect first-time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava Bracelet data when coupled with the self-reported Daily Symptom Diary data, and the algorithm using self-reported Daily Symptom Diary data alone. In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. The protocol contains an additional seventeen secondary outcomes which address infection incidence rates, health resource utilization, symptoms reported by SARS-CoV-2 infected participants, and the rate of breakthrough and asymptomatic SARS-CoV-2 infections among individuals vaccinated against COVID-19. PCR or antigen testing will occur when the subject receives a notification from the algorithm to seek additional testing. Subjects will be advised to get tested via the national testing programme, and report the testing result in the Ava COVID-RED app and a survey. If they cannot obtain a test via the national testing programme, they will receive a nasal swab self-sampling kit at home, and the sample will be tested by PCR in a trial-affiliated laboratory. In addition, all subjects will be asked to take a capillary blood sample at home at baseline (Month 0), and at the end of the Learning Phase (Month 3), Period 1 (Month 6) and Period 2 (Month 9). These samples will be used for SARS-CoV-2-specific antibody testing in a trial-affiliated laboratory, differentiating between antibodies resulting from a natural infection and antibodies resulting from COVID-19 vaccination (as vaccination will gradually be rolled out during the trial period). Baseline samples will only be analysed if the sample collected at the end of the Learning Phase is positive, and samples collected at the end of Period 1 will only be analysed if the sample collected at the end of Period 2 is positive. When subjects obtain a positive PCR/antigen or serology test result during the study, they will continue to be in the study but will be moved into a so-called “COVID-positive” mode in the Ava COVID-RED app. This means that they will no longer receive recommendations from the algorithms but can still contribute and track symptom and bracelet data. The primary analysis of the main objective will be executed using data collected in Period 2 (Month 6 through 9). Within this period, serology tests (before and after Period 2) and PCR/antigen tests (taken based on recommendations by the algorithms) will be used to determine if a subject was infected with SARS-CoV-2 or not. Within this same time period, it will be determined if the algorithms gave any recommendations for testing. The agreement between these quantities will be used to evaluate the performance of the algorithms and how these compare between the study conditions. Randomisation All eligible subjects will be randomized using a stratified block randomization approach with an allocation ratio of 1:1 to one of two sequences (experimental condition followed by control condition or control condition followed by experimental condition). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence, resulting in equal numbers of high-risk and normal-risk individuals between the sequences. Blinding (masking) In this study, subjects will be blinded as to study condition and randomization sequence. Relevant study staff and the device manufacturer will be aware of the assigned sequence. The subject will wear the Ava bracelet and complete the Daily Symptom Diary in the Ava COVID-RED app for the full duration of the study, and they will not know if the feedback they receive about their potential infection status will only be based on data they entered in the Daily Symptom Diary within the Ava COVID-RED app or based on both the data from the Daily Symptom Diary and the Ava bracelet. Numbers to be randomised (sample size) 20,000 subjects will be recruited and randomized 1:1 to either Sequence 1 (experimental condition followed by control condition) or Sequence 2 (control condition followed by experimental condition), taking into account their risk level. This results in approximately 6,500 normal-risk and 3,500 high-risk individuals per sequence. Trial Status Protocol version: 1.2, dated January 22nd, 2021 Start of recruitment: February 22nd, 2021 End of recruitment (estimated): April 2021 End of follow-up (estimated): December 2021 Trial registration The trial has been registered at the Netherlands Trial Register on the 18th of February, 2021 with number NL9320 ( https://www.trialregister.nl/trial/9320 ) Full protocol The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol

    Effects of Cu/Zn Superoxide Dismutase (sod1) Genotype and Genetic Background on Growth, Reproduction and Defense in Biomphalaria glabrata

    Get PDF
    Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Juvenile Sentencing in Illinois: Addressing the Supreme Court Trend away from Harsh Punishments for Juvenile Offenders

    Get PDF
    The United States Supreme Court has steadily been changing the way it approaches juvenile sentencing since 2005. This ideological shift has occurred as a response to the increase in biological and sociological studies, which point toward fundamental differences between juveniles and adults. This Note addresses how the new mandates by the Supreme Court have been implemented around the country, with a focus on statutory changes Illinois should make moving forward. Specifically, this Note argues that there are several adjustments Illinois will have to make in regards to the way it sentences juvenile homicide offenders, in order to be considered Constitutional based on the analysis set forth by the Supreme Court in Roper v. Simmons, Graham v. Florida, and Miller v. Alabama. First, lengthy, consecutive term-of-years sentences should be abolished because it does not give juvenile offenders the “meaningful opportunity for release” required by Graham. This Note suggests that courts need to look at the idea of a “meaningful opportunity for release” differently when sentencing juveniles as opposed to adult offenders, because studies have shown that adolescents who are imprisoned have a much lower life expectancy than average. Second, Illinois should amend its sentencing statutes to require judges to consider several factors, while on record at a sentencing hearing, before sentencing a juvenile homicide offender to life in prison. These factors, laid out within this Note, will put Illinois at the forefront of ethical juvenile sentencing, while also ensuring that it does not violate the authority of Miller. Admittedly, these theories have been criticized for being too ‘soft’ on punishment for juveniles who are convicted of felony murder. However, the suggestions in this Note are meant to allow for the protection of the adolescent’s Eighth Amendment right to be free of cruel and unusual punishment, while also considering the severity and nature of the offense

    Double-blind placebo-controlled evaluation of the PROMETA™ protocol for methamphetamine dependencea dd_3619 361..369

    No full text
    ABSTRACT Aims To evaluate the efficacy and safety of the PROMETA™ Protocol for treating methamphetamine dependence. Design A double-blind, placebo-controlled 108-day study with random assignment to one of two study conditions: active medication with flumazenil (2 mg infusions on days 1, 2, 3, 22, 23), gabapentin (1200 mg to day 40) and hydroxazine (50 mg to day 10) versus placebo medication (with active hydroxazine only). Setting Three substance abuse treatment clinics: two in-patient, one out-patient. Participants Treatment-seeking, methamphetaminedependent adults (n = 120). Measurements Primary outcome was percentage of urine samples testing negative for methamphetamine during the trial. Findings No statistically significant between-group differences were detected in urine drug test results, craving, treatment retention or adverse events. Conclusions The PROMETA protocol, consisting of flumazenil, gabapentin and hydroxyzine, appears to be no more effective than placebo in reducing methamphetamine use, retaining patients in treatment or reducing methamphetamine craving

    Comparing Cerebral Palsy Surveillance Definition to ICD Codes and Written Diagnoses

    Get PDF
    ObjectiveTo compare prevalence estimates obtained by the ADDM cerebral palsy surveillance method to other administrative or diagnostic indications of cerebral palsy.IntroductionCerebral Palsy (CP) is the most common cause of motor disability in children. CP registries often rely on administrative data such as CP diagnoses or International Classification of Diseases (ICD) codes indicative of CP. However, little is known about the validity of these indicators. We calculated sensitivity, specificity, positive and negative predictive values of CP ICD-9 codes and CP diagnoses compared to a “gold standard” CP classification based on detailed medical and education record review.MethodsThis sample includes 50,332 8-year-olds living in four US sites (32 counties in Alabama, 5 counties in Georgia, 10 counties in Wisconsin, and 5 counties in Missouri) in 2006, 2008, and 2010. The Autism and Developmental Disabilities Monitoring (ADDM) Network reviewed medical and education records for these children as part of the US Centers for Disease Control and Prevention population-based surveillance of developmental disabilities. All of these children received special education services or were assigned one or more ICD-9 codes associated with a variety of developmental disabilities by community medical providers. Medical and education records were reviewed by trained staff; if the records contained CP diagnoses or motor findings indicative of CP, detailed clinical information was abstracted for additional review by trained clinicians who determined whether the child met the CP case definition based on all information available. Abstracted records were also reviewed for evidence of known motor disorders or genetic conditions that disqualified a child from being a CP case, such as inborn error of metabolism or muscular dystrophy. Trained clinicians reviewed and excluded children with confirmed disqualifying conditions.We calculated CP prevalence, sensitivity, specificity, and positive and negative predictive values for three different methods used to identify cases, using the ADDM surveillance case identification as the gold standard. These methods include: 1) ICD-9 codes for CP (342–344); 2) a CP diagnosis written in the medical or education records, excluding children with disqualifying conditions, and 3) both ICD-9 codes (342–344) and a CP diagnosis written in the medical or education records, excluding children with disqualifying conditions. In an attempt to avoid requiring record review for method 1, we considered using ICD-9 codes for disqualifying conditions. However, we found that ICD codes for these conditions did not correlate well with disqualifying conditions identified in medical record reviews; therefore disqualifying conditions were not considered for method 1. Methods 2 and 3 did require review of medical records for disqualifying conditions and for a written CP diagnosis, but overall were less extensive than traditional ADDM surveillance methods.In order to determine the impact of different classification criteria on how and which children are captured by surveillance methods, we compared demographic and other characteristics of all children who met the ADDM surveillance case definition. We compared children who would and would not be classified as CP cases using method 3.ResultsOut of the total 50,332 children, 1294 met the ADDM surveillance case definition, 2201 had CP ICD codes (method 1), 1502 had a written CP diagnosis and no disqualifying conditions (method 2), and 1345 had both CP ICD codes and a written diagnosis and no disqualifying conditions (method 3). Each study year, between 32—48% of abstracted children were excluded due to disqualifying conditions found in medical records. The ADDM network gold standard CP prevalence was 3.3 per 1000 in 2006, 3.1 per 1000 in 2008, and 2.9 per 1000 in 2010.For method 1, sensitivity was 90.0%, specificity was 97.4%, positive predictive value was 51.6% and negative predictive value was 99.7%. Method 1 prevalence estimates were 5.3 per 1000 in 2006, 4.6 per 1000 in 2008, and 4.6 per 1000 in 2010. For method 2, sensitivity was 98.1%, specificity was 88.4%, PPV was 84.5% and NPV was 98.4% compared to the ADDM Network definition. Method 2 estimated prevalence was 3.9 per 1000 for 2006, 3.6 per 1000 for 2008, and 3.2 per 1000 for 2010. For method 3, sensitivity was 89.6%, specificity was 99.5%, PPV was 84.3% and NPV was 99.7%. Method 3 estimated prevalence was 3.5 per 1000 for 2006, 3.2 per 1000 for 2008, and 2.8 per 1000 for 2010.Using Pearson’s Chi-Square tests, we compared demographic and other characteristics of ADDM Network CP case children who also met method 3 case definition (n = 1134) and children who met the ADDM Network CP definition but not method 3 case definition (n = 160). Demographic information was not different between these children. ADDM Network CP case children who did not meet method 3 criteria were significantly less likely to require a wheelchair for mobility than children who met method 3 criteria (4.4% versus 27.4%, p < .05).ConclusionsRelying on ICD-9 codes without excluding disqualifying conditions to identify CP cases (method 1) resulted in high sensitivity (90%), but low positive predictive value as well as an overestimated CP prevalence when compared with the ADDM Network method. Use of a written diagnosis and excluding disqualifying conditions (method 2) resulted in very high sensitivity (98%), with fewer false positives but overestimated CP prevalence compared to the ADDM estimate. In contrast, using both CP ICD codes and a written CP diagnosis and excluding disqualifying conditions (method 3) yielded prevalence estimates similar to ADDM Network CP estimates; this approach also had high sensitivity, specificity, and PPV. Methods 2 and 3 still require manual record review, unlike method 1. For method 2, reviewers would need to review all records for CP and disqualifying conditions. Method 3 only requires review of records with CP ICD codes, comprising 4% of all records currently reviewed. Method 3 would fail to capture children without both a written diagnosis and ICD codes; and this approach may be less sensitive for detecting CP among children with less severe motor impairment than using the gold standard.Using ICD codes and written CP diagnoses contained in medical and education records combined with a limited medical record review to identify disqualifying conditions could lower operational costs of CP surveillance while preserving accurate prevalence estimates compared with the more labor-intensive processes currently used. Further evaluation is needed to determine if improvements in efficiency are worth potential trade-offs in the data collected by the system. Of particular importance is whether the approach could capture all the necessary indicators that are important to stakeholders. Additional analyses would also need to evaluate whether the surveillance methods affect other findings, such as previously observed disparities, co-occurring conditions, or CP severity

    Sex-specific differences in physiological parameters related to SARS-CoV-2 infections among a national cohort (COVI-GAPP study).

    Get PDF
    Considering sex as a biological variable in modern digital health solutions, we investigated sex-specific differences in the trajectory of four physiological parameters across a COVID-19 infection. A wearable medical device measured breathing rate, heart rate, heart rate variability, and wrist skin temperature in 1163 participants (mean age = 44.1 years, standard deviation [SD] = 5.6; 667 [57%] females). Participants reported daily symptoms and confounders in a complementary app. A machine learning algorithm retrospectively ingested daily biophysical parameters to detect COVID-19 infections. COVID-19 serology samples were collected from all participants at baseline and follow-up. We analysed potential sex-specific differences in physiology and antibody titres using multilevel modelling and t-tests. Over 1.5 million hours of physiological data were recorded. During the symptomatic period of infection, men demonstrated larger increases in skin temperature, breathing rate, and heart rate as well as larger decreases in heart rate variability than women. The COVID-19 infection detection algorithm performed similarly well for men and women. Our study belongs to the first research to provide evidence for differential physiological responses to COVID-19 between females and males, highlighting the potential of wearable technology to inform future precision medicine approaches
    corecore