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Abstract

Considering sex as a biological variable in modern digital health solutions, we investigated

sex-specific differences in the trajectory of four physiological parameters across a COVID-

19 infection. A wearable medical device measured breathing rate, heart rate, heart rate vari-

ability, and wrist skin temperature in 1163 participants (mean age = 44.1 years, standard

deviation [SD] = 5.6; 667 [57%] females). Participants reported daily symptoms and con-

founders in a complementary app. A machine learning algorithm retrospectively ingested

daily biophysical parameters to detect COVID-19 infections. COVID-19 serology samples

were collected from all participants at baseline and follow-up. We analysed potential sex-

specific differences in physiology and antibody titres using multilevel modelling and t-tests.

Over 1.5 million hours of physiological data were recorded. During the symptomatic period
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of infection, men demonstrated larger increases in skin temperature, breathing rate, and

heart rate as well as larger decreases in heart rate variability than women. The COVID-19

infection detection algorithm performed similarly well for men and women. Our study

belongs to the first research to provide evidence for differential physiological responses to

COVID-19 between females and males, highlighting the potential of wearable technology to

inform future precision medicine approaches.

Introduction

On March 11, 2020, the WHO declared the fast-spreading coronavirus disease (COVID-19) a

global pandemic [1]. This novel viral disease was first detected in Wuhan, China, in December

2019 and is caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) [2].

Increasing knowledge about risk factors and symptoms, as well as the implementation of mass

reverse transcription polymerase chain reaction (RT-PCR), serological tests, vaccines, and

social restrictions have helped control its spread [3,4]. However, asymptomatic virus transmis-

sions and emerging virus mutations pose ongoing challenges in dealing with the pandemic.

Today, more than two years after the first case was detected, many countries worldwide con-

tinue to experience waves of rising infections, with numerous unknowns remaining in our

understanding of SARS-CoV-2. In particular, consistent data about the role of sex in relation

to COVID-19 are lacking [5,6]. Significant changes in physiological parameters such as breath-

ing rate, heart rate, heart rate variability, and wrist skin temperature during a COVID-19 infec-

tion [7] raise the question about sex-specific differences within the trajectory of these

parameters. A better understanding of sex-specific trajectories in physiological responses to

the infection may support early detection and treatment of COVID-19.

A meta-analysis found that men with COVID-19 were globally almost three times more

likely than women to be admitted to an intensive treatment unit [8]. Furthermore, the disease’s

mortality rates were higher in men [9], potentially due to sex-specific differences in angioten-

sin-converting enzyme 2 (ACE2) expression [10,11]. On the other hand, women were found

to more frequently experience persistent symptoms such as dyspnoea and fatigue several

months after the acute phase of the illness [12]. The infection rates were similar between the

sexes [8], although this observation may differ between countries [13]. Moreover, initial analy-

ses of eumenorrheic women’s susceptibility to SARS-CoV-2 among a real-world sample are in

line with previously shown immune function fluctuations across the menstrual cycle [14] and

suggest increased susceptibility during the luteal phase [15]. Research on sex-specific differ-

ences in immune responses that underlie COVID-19 disease outcomes showed higher plasma

levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of

non-classical monocytes in male patients, whereas female patients showed higher T cell activa-

tion during SARS-CoV-2 infection [16]. Also, higher levels of innate immune cytokines were

associated with worse disease progression in female patients [16].

Previous studies have shown that direct-to-consumer and easy-to-use products with wide

market availability, such as Fitbit [17], smartwatches [18], the Ava bracelet [7,19], and other

wearable devices [20] could be used for surveillance of changes in physiological parameters to

give the user an early warning before COVID-19 symptom occurrence [21] or during asymp-

tomatic infection [22]. The COVI-GAPP study investigated the applicability of the Ava brace-

let for pre-symptomatic detection of COVID-19 [23]. Developed as a fertility tracker, the

bracelet measures physiological parameters, including wrist skin temperature, breathing rate,

PLOS ONE Sex-differences in physiological parameters

PLOS ONE | https://doi.org/10.1371/journal.pone.0292203 March 6, 2024 2 / 17

publicly available through DataverseNL at the

following link (doi:10.34894/FW9PO7). Further

data that underlie the results reported in this paper

were collected from study participants from the

Principality of Liechtenstein, a very small country,

where the risk of subject identification is increased

due to the size of the population (less than 40’000

inhabitants). To respect data protection and to

prevent the identification of participants, data

access is restricted to researchers meeting the

criteria for access to confidential data. Data are

available from (contact: lorenz.risch@ufl.li, martin.

risch@ksgr.ch, and david.conen@phri.ca). Further,

the data underlying the results presented in the

study are available from (Private University of the

Principality of Liechtenstein, Institutional Review

Board, 9495 Triesen; irb@ufl.li).

Funding: This work has received support from the

Princely House of the Principality of Liechtenstein,

the government of the Principality of Liechtenstein,

the Hanela Foundation in Switzerland, and the

Innovative Medicines Initiative (IMI) 2 Joint

Undertaking under grant agreement No

101005177. This Joint Undertaking receives

support from the European Union’s Horizon 2020

research and innovation programme and EFPIA.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have read the

journal’s policy and have the following competing

interests: Lorenz Risch, and Martin Risch are key

shareholders of the Dr Risch Medical Laboratory.

David Conen has received consulting fees from

Roche Diagnostics, outside of the current work.

Andjela Markovic, Vladimir Kovacevic, Martina

Rothenbühler, Brianna Goodale and Maureen

Cronin are past employees of Ava AG. Brianna

Goodale and Timo Brakenhoff are current

employees of Julius Clinical BV. Billy Franks is a

former employee of Julius Clinical BV and now an

employee of Haleon. Paul Klaver and Duco Veen

are former employees of Julius Clinical BV.

Marianna Mitratza is a current employee of P95

CVBA. There are no patents, products in

development or marketed products associated with

this research to declare. These competing interests

do not alter our adherence to PLOS ONE policies

on sharing data and materials.

https://doi.org/10.1371/journal.pone.0292203
https://doi.org/10.34894/FW9PO7
mailto:lorenz.risch@ufl.li
mailto:martin.risch@ksgr.ch
mailto:martin.risch@ksgr.ch
mailto:david.conen@phri.ca
mailto:irb@ufl.li


heart rate, heart rate variability, and skin perfusion [24]. The previously published interim

analysis of the COVI-GAPP dataset demonstrated significant changes in skin temperature,

breathing rate, heart rate, and heart rate variability during a COVID-19 infection [7]. These

parameters were used to develop a machine learning (ML) algorithm for the detection of pre-

symptomatic SARS-CoV-2 infection, which successfully detected 68% of COVID-19 cases up

to two days before symptom onset. The algorithm is currently being tested and validated in a

larger population with real-time access to the algorithm’s predictions [19].

The current work analyzed the same physiological parameters collected in the COVI-GAPP

study to quantify sex-specific differences before, during, and after a COVID-19 infection. We

examined differences in trajectories of physiological parameters over five defined phases (base-

line, incubation, pre-symptomatic, symptomatic, and recovery) between female and male par-

ticipants. Furthermore, we evaluated the performance of our ML algorithm for female and

male participants separately with the goal of assessing and correcting a potential sex bias in its

functionality. Finally, we examined sex differences in antibody levels following COVID-19 to

gain additional insights into sex-specific immune responses.

Materials and methods

The current study was based on the COVI-GAPP research initiative and included continuous

monitoring of biophysical signals by means of a wearable device, the Ava bracelet, coupled

with periodic blood tests to assess SARS-CoV-2 antibody titres. Additionally, a ML algorithm

was developed based on the COVI-GAPP data to aid in the early detection of COVID-19. This

section provides an overview of the methodology employed to address the study’s three pri-

mary objectives: 1) investigation of sex differences in COVID-19-related physiological param-

eters; 2) evaluation of the sex-specific performance of a ML algorithm for early COVID-19

detection; and 3) analysis of sex differences in antibody titres following COVID-19.

Study design and participants

Since 2010, the observational population-based Genetic and Phenotypic Determinants of

Blood Pressure and Other Cardiovascular Risk Factors (GAPP) study aims to better under-

stand the development of cardiovascular risk factors in the general population of healthy adults

aged 25 to 41 years [25]. From 2170 GAPP participants, 1163 individuals were enrolled in the

COVI-GAPP study with inclusion and exclusion criteria published previously [23]. Data were

collected from April 14, 2020, until January 31, 2022. The local ethics committee (KEK, Zürich,

Switzerland) approved the study protocol, and written informed consent was obtained from

each participant prior to enrolment (BASEC 2020–00786).

Data collection

1. Ava bracelet. Physiological parameters of interest for this analysis were breathing rate,

heart rate, heart rate variability, and wrist skin temperature. They were measured every 10 sec-

onds by a wrist-worn bracelet while the user slept. If a minimum of 4 hours of relatively unin-

terrupted sleep is achieved, proprietary manufacturer algorithms are employed for pre-

processing to eliminate artifacts, identify sleep stages, and provide the nightly physiological

parameters. To mitigate potential fluctuations during transitions between wakefulness and

sleep, the initial 90 and final 30 minutes of data from each night were excluded. Additionally,

each physiological parameter underwent locally estimated scatterplot smoothing (LOESS)

before analysis to reduce artificial fluctuations due to measurement errors, aligning with previ-

ously established best practices [26]. Further details on the applied data cleaning practices

described by the manufacturer can be found in previous publications [7,27].
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The CE-certified and FDA-cleared Ava Fertility Tracker (version 2.0; Ava AG, Switzerland)

was originally built to detect ovulating women’s fertile days in real time with 90% accuracy

[27–29]. The bracelet’s three sensors can track biophysical changes regardless of the wearer’s

sex [7]. In the current study, they were used for detecting infection-based deviations from

baseline parameters in both men and women (regardless of their menstruating status). In

order to meet the European Union’s General Data Protection Regulation (GDPR) require-

ments on participant data, log-in procedure and data handling were performed with an anon-

ymized email account. Participants synchronized their bracelets each morning upon waking to

a complementary smartphone app. Participants were reviewed by a weekly compliance report

showing synchronization rates. The study team contacted individuals to follow-up with log-in

issues or operational challenges, therefore ensuring quality control.

In addition to automatically collected physiological data, participants also provided infor-

mation in the complementary app about their daily alcohol, medication, and drug intake (for

more information see Risch et al. [7]), as these substances can alter central nervous system

functioning [30]. Furthermore, the app collected information about comorbidities that could

potentially influence the physiological signals. Finally, the app provided a customized user

functionality where participants reported COVID-19 symptoms in a daily diary. Participants

were also able to see and monitor changes in their physiological parameters in the app.

2. SARS-CoV-2 antibody testing. SARS-CoV-2 antibody tests were performed by the

medical laboratory Dr Risch Ostschweiz AG (Buchs SG, Switzerland) with an orthogonal test

algorithm employing electrochemiluminescence (ECLIA) assays testing for pan-immunoglob-

ulins directed against the N antigen (sensitivity of 96%, specificity of 99.9% for recognition of

past SARS-CoV2 infection) and the receptor binding domain (RBD) of the SARS-CoV-2 spike

protein (sensitivity of 97.6%, specificity of 99.8% for recognition of past SARS-CoV2 infec-

tion), as described by Schaffner et al. [31] and Weber et al. [32]. The enacted procedure

ensures testing for actual SARS-CoV-2 infection independent of vaccine status. Baseline data

were collected starting in April 2020 onwards (run 1; R1). Three follow-up blood samples (run

2, R2; run 3, R3; and run 4, R4) were collected within the scope of the study (Fig 1). The cut-off

levels used for positive and negative values were� 1.0 and� 0.1, respectively. Values between

0.2–0.9 were considered as gray zone. Seroconversion was assumed if the first blood sample

was negative for SARS-CoV-2 antibodies but a subsequent sample was positive. Follow-up

calls with participants who tested positive were performed to discuss their symptoms and

duration.

3. Questionnaires. When visiting the study centre for SARS-CoV-2 antibody tests, partic-

ipants were asked to answer a questionnaire about their personal information (age, sex), smok-

ing status (current, past, never), as well as symptoms and hospitalizations during COVID-19

infection. These visits occurred at approximately 6-month intervals across the duration of data

collection. Body mass index (BMI) based on height and weight was calculated with data from

the GAPP database.

Statistical analysis

Our primary objective was to examine sex differences in the trajectory of daily levels of the

four physiological parameters across a SARS-CoV-2 infection (i.e., breathing rate in breaths

per minute, skin temperature in degree Celsius, heart rate in beats per minute, heart rate vari-

ability). Heart rate variability was quantified as the ratio of low-frequency (0.04–0.15 Hz) to

high-frequency (0.15–0.4 Hz) oscillations, as previously described [7]. Secondarily, we evalu-

ated a machine learning algorithm designed for early detection of COVID-19 separately in

male and female participants to examine potential sex biases in algorithm performance.
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Finally, we assessed sex-specific differences in antibody titres after SARS-CoV-2 infections.

We processed and analysed all data using R (version 4.1.1) [33] and Python (version 3.6) [34].

1. Sex-specific differences in COVID-19 related physiological parameters. To examine

the association between sex and physiological parameters during baseline, incubation, pre-

symptomatic, symptomatic, and recovery phases of a COVID-19 infection, we applied multi-

level linear mixed models with random intercepts and slopes including residual maximum

likelihood estimation (REML) and Satterthwaite degrees of freedom. A multiplicative interac-

tion term tested the association between sex and the infection phase. All signals measured

more than 10 days before symptom onset via phone call confirmation with a study team mem-

ber were categorized as occurring during the baseline period. The incubation period was

defined as the time interval from 10 days up to 3 days before symptom onset. The pre-symp-

tomatic period was defined as the two days before symptom onset, while the symptomatic

period lasted from the day of symptom onset until the day symptoms ended. All signals mea-

sured after symptom end were categorized as occurring during the recovery period. We

dummy-coded four variables to indicate the period within which the signal occurred, with the

baseline serving as the reference period. Each of the four multilevel models was compared to

the corresponding null model (i.e., an intercept-only model) by means of an ANOVA.

2. Sex-specific differences in algorithm’s performance. The retrospective ML algorithm,

developed as described in previous papers [7,19] aimed to detect a COVID-19 infection prior

to symptom onset. The algorithm was designed to ingest trends in physiological signals across

sets of days to detect deviations in these signals and predict a potential infection. The model

was trained to predict infection two days and one day prior to symptom onset, as well as on

the day of symptom onset. Here, we assessed the algorithm’s performance metrics separately

for males and females to identify any potential sex bias in the model. Performance metrics

were calculated per day in participants who tested positive, where days from -40 to -2 relative

to the onset of the first symptoms were considered negative and days from -2 to day 0 as

Fig 1. Study flow chart of the 1,163 participants that are enrolled in the COVI-GAPP study. The cut-off levels used

for positive and negative values were� 1.0 and� 0.1, respectively. Values between 0.2–0.9 were considered as gray

zone * Successful bracelet synchronization on more than 50% of days around symptom onset.

https://doi.org/10.1371/journal.pone.0292203.g001
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positive. In other words, positive predictions of the algorithm prior to 2 days before symptom

onset were interpreted as false positives. The set of metrics selected for the evaluation of the

algorithm included precision (the number of true positives divided by the sum of true positives

and false positives), recall (the number of true positives divided by the sum of true positives

and false negatives), and F-score (the harmonic mean of precision and recall).

3. Sex-specific differences in antibody titres of SARS-CoV-2 Nucleocapsid after

COVID-19 infection. To gain a deeper understanding of sex-specific differences in the

immune system’s reaction to the virus, antibody trajectories were monitored during the study

period. Antibody titres reflected the concentration of antibodies in the blood that are specific

to the SARS-CoV-2 virus. To enable a reliable comparison of antibody titres after a COVID-19

infection, antibody titres (values > 1.0) against the SARS-CoV-2 Nucleocapsid were compared

between the sexes. Blood was collected four times over the course of the study with varying

sample sizes (Fig 1). Normally distributed variables were compared using unpaired t-tests, and

non-normally distributed variables were compared using Mann-Whitney U tests.

Results

Participants

A total of 1163 participants (mean age = 44.1 years, standard deviation [SD] = 5.6; 667 [57%]

females) were enrolled in the study. During the study period, 127 participants (10.9%;

[9.3,12.8]) contracted COVID-19. Eighty-two participants (mean age = 42.6 ± 5.3 years; 56

[68%] females) testing positive for SARS-CoV-2 had worn and synchronized their bracelet

successfully on more than 50% of days around symptom onset (i.e., at least 20 days before and

20 days after symptom onset), thereby ensuring sufficient quality of data to be included in

analyses. The number of days with successfully synchronized bracelet data did not differ

(p = 0.967) between females (range 67 to 511 days; mean = 239.6 ± 71.8 days) and males (range

45 to 508 days; mean = 238.8 ± 86.4 days). With regards to the reported symptom duration,

values for four participants (2 females) were missing and imputed based on the median across

the sample.

Blood samples and questionnaire data were available from 1,144 participants. The mean age

and BMI of these participants were 45 (± 5.5) and 24.7 (± 3.9), respectively. At baseline, male

participants had significantly higher BMIs (26.17 ± 3.41) than female participants

(23.70 ± 3.96; t(1079) = 10.71, p<0.001). They also reported significantly higher rates of hyper-

tension (7.74%) than female participants (3.15%; X2(1) = 11.23, p<0.001). Analyses did not

reveal any significant sex-based differences in smoking status, age, or hospitalization rate

(Table 1).

Sex-specific differences in COVID-19 related physiological parameters

We show the trajectory of each of the four analysed physiological parameters during a SARS--

CoV-2 infection separated by sex (Fig 2). The multilevel models revealed significant differ-

ences between male and female participants in all parameters during the symptomatic period

(Table 2). We observed a larger increase in skin temperature, breathing rate, and heart rate, as

well as a larger decrease in heart rate variability in males compared to females during this

period. Moreover, male participants’ breathing rate and heart rate remained at significantly

higher levels during the recovery period as compared to their female peers (Table 2). Each of

the four models provided a significantly better fit to the data than the corresponding null

model (p<0.0001).

As a sensitivity analysis, we also tested potentially confounding variables as single terms in

additional models to determine whether changes in physiological parameters occurred due to
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Table 1. Sex differences in baseline characteristics.

Variables Total

n = 1,144

Male

n = 478

Female

n = 666

Test statistics Significance

(p value)

Smoking status, N

(never: current: past smoker)

658: 167: 319 265: 68: 145 393: 99: 174 Χ2 (2) = 2.46 0.292

Hypertension, N (yes: no) 58: 1086 37: 441 21: 645 Χ2 (1) = 11.23 <0.001

Age, years (±SD) 43.99 (± 5.51) 44.3 (±5.35) 43.77 (±5.61) t (1057) = 1.53 0.1449

BMI, kg/m2 (±SD) 24.72 (±3.94) 26.17 (±3.41) 23.7 (±3.96) t (1079) = 10.71 <0.001

Hospitalization 01, N (yes: no) 0:10 0:4 0:6 Fisher’s exact test 1

Hospitalization 02, N (yes: no) 11:113 7:44 4:69 Χ2 (1) = 2.52 0.2047

Hospitalization 03, N (yes: no) 2:23 0:12 2:11 Χ2 (1) = 0.46 0.4973

Hospitalization 04, N (yes: no) 3:47 0:24 3:23 Χ2 (1) = 1.25 0.2625

Baseline characteristics stratified according to sex were collected by questionnaires completed within the GAPP study. Information about hospitalization was collected

four times (01–04) in the scope of the study centre visit for SARS-CoV-2 antibody tests. It was a part of the questionnaire for SARS-CoV-2 positive participants and

represented a measure of disease severity. Data are presented as mean ± SD or number. The test statistic and the corresponding p-value are shown for the comparison

between the female and male group for each variable.

https://doi.org/10.1371/journal.pone.0292203.t001

Fig 2. Trajectory of the four analysed physiological parameters across the course of a confirmed COVID-19 infection centred around participant-

reported symptom onset. The values of each physiological parameter (with 95% CIs) were normalized according to each individual’s baseline measurements

and collapsed across females (n = 56) and males (n = 26).

https://doi.org/10.1371/journal.pone.0292203.g002
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COVID-19 infection over and above changes associated with participant age, BMI, hyperten-

sion, medication, alcohol, and recreational drugs. These variables were selected based on previ-

ously reported associations with physiological signals [35]. Furthermore, we observed sex

differences in BMI and hypertension in the current sample (Table 1) and, therefore, examined

in the sensitivity analysis whether these effects can account for the sex differences found in the

main analysis. Hypertension, medication and recreational drug intake were binary variables

(i.e., yes/no), while alcohol intake was represented through four categories (i.e., none/1-2

drinks/3-4 drinks/5+ drinks with none as the reference category). As outlined in the main

analysis, four multilevel models were computed (i.e., one for each physiological parameter)

additionally including the described variables as fixed effects. In these models, the interactions

between sex and phase of infection remained unchanged, indicating that they cannot be

explained by the influence of the added variables (S1 Table).

Sex-specific differences in algorithm’s performance

Table 3 provides a by-sex breakdown of the algorithm’s performance. Sensitivity score can be

found as the recall of the positive class (days with an existent SARS-CoV2 infection), while

Table 2. Results from multilevel linear mixed models showing the main effects of infection phase and sex as well as the interactions between the two with regards to

changes in physiological signals.

Skin temperature (degree Celsius) Breathing rate (breaths per minute) Heart rate (beats per minute) Heart rate variability

Intercept 35.01 (<0.0001) 13.51 (<0.0001) 46.98 (<0.0001) 4.3 (<0.0001)

Infection phase

Baseline Reference Reference Reference Reference

Incubation 0.18 (0.15) 0.33 (0.13) 1.49 (0.12) -0.25 (0.12)

Pre-symptomatic 0.23 (0.26) 0.71 (0.17) 1.26 (0.41) -0.18 (0.42)

Symptomatic 0.74 (<0.0001) 2.93 (<0.0001) 6.88 (<0.0001) -0.93 (<0.0001)

Recovery 0.22 (0.0006) 0.38 (0.004) 2.17 (0.003) -0.28 (0.09)

Sex, female 0.45 (<0.0001) 0.91 (0.06) 4.96 (0.001) -1.35 (<0.0001)

Interaction

Sex*Incubation -0.02 (0.74) -0.2 (0.11) -0.36 (0.5) 0.09 (0.34)

Sex*Pre-symptomatic -0.01 (0.92) -0.26 (0.38) 0.07 (0.93) 0.04 (0.78)

Sex*Symptomatic -0.28 (<0.0001) -1.31 (<0.0001) -3.09 (0.0001) 0.43 (<0.0001)

Sex*Recovery -0.04 (0.23) -0.25 (0.001) -0.96 (0.02) 0.11 (0.25)

Unstandardized beta coefficients are presented, with p-values in parentheses and in bold if lower than 0.05. Sex was coded such that positive coefficients represent larger

values in females.

https://doi.org/10.1371/journal.pone.0292203.t002

Table 3. Performance metrics of the machine learning algorithm for female and male participants.

Participant Sex Class Precision Recall F-score

All 0 12.36 68.421 19.048

1 91.599 41.509 78.331

Female 0 12.977 60.69 20.859

1 92.147 53.125 73.181

Male 0 10.811 80.0 15.385

1 92.308 26.667 85.714

Sensitivity score can be found as the recall of the positive class (i.e., days with an existent SARS-CoV2 infection), while specificity is the recall of the negative class (i.e.,

days without a SARS-CoV2 infection).

https://doi.org/10.1371/journal.pone.0292203.t003
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specificity is the recall of the negative class (days without a SARS-CoV2 infection). The algo-

rithm showed the same precision (i.e., 92) when giving a SARS-CoV2 positive alert across par-

ticipant sex. Cross-class recall was more balanced among females than males in our sample.

Detecting 53% of SARS-CoV-2 positive days in females, the algorithm performed less well in

males (26% of SARS-CoV2 positive cases detected).

Sex-specific differences in antibody titres of SARS-CoV-2 Nucleocapsid

after COVID-19 infection

Antibody titres of the female and male sub-groups were not significantly different across runs.

Nucleocapsid antibody values in run 1 trended higher in female participants (Table 4).

Discussion

The presented study examined sex-specific differences in physiological parameters among 82

individuals with a documented SARS-CoV-2 infection. We found that male participants expe-

rienced significantly larger increases in wrist skin temperature, breathing rate and heart rate as

well as larger decreases in heart rate variability during the symptomatic period compared to

females. In one of the first prospective cohort studies relying on wearable sensor technology to

collect real-time continuous physiological signals, we provide evidence for sex-based differen-

tial physiological responses to COVID-19.

Considering the higher mortality and hospitalization rates observed in male COVID-19

patients [9], our findings may reflect sex-specific biological responses to the infection. In line

with previous work [16], we did not observe any differences between the sexes with regard to

antibody titers. However, Takahashi et al. [16] observed a stronger acute T-cell response in

females as compared to male COVID-19 patients. The poorer T-cell response in men was asso-

ciated with their worse disease progression. On the other hand, the authors measured higher

levels of several pro-inflammatory innate immunity chemokines and cytokines in men as com-

pared to women. They thus concluded that the early phase of COVID-19 is associated with key

sex differences in immunological mechanisms potentially accounting for the differential dis-

ease progression between women and men.

Given that the sex differences in physiological signals in our study are most pronounced

during the symptomatic phase, we propose that they reflect the above-mentioned sex-specific

immunological mechanisms [36]. Inflammatory markers (e.g., cytokines) have been shown to

reflect disease severity in COVID-19 [37]. As the autonomic nervous system is known to mod-

ulate inflammation [38] and the examined physiological signals reflect the function of the

autonomic nervous system [39], our findings suggest support for differential immunological

responses to COVID-19 between the sexes.

Table 4. SARS-CoV-2 Nucleocapsid (N) antibody (AB) values stratified according to sex.

Variables Male (n = 7) Female (n = 7) Test statistics Significance (p value)

SARS-CoV-2 N AB run1 17.7 (5.8–83.5) 54.8 (5.7–135.1) W = 13 0.14

Male (n = 51) Female (n = 68)

SARS-CoV-2 N AB run2 34.1 (1–183.7) 33.4 (1.7–212.2) W = 1753 0.92

Male (n = 62) Female (n = 85)

SARS-CoV-2 N AB run3 40.05 (1–274) 29.7 (1.4–234.3) W = 2772 0.59

Male (n = 76) Female (n = 102)

SARS-CoV-2 N AB run4 17.95 (1.2–221) 36.59 (1–266.4) W = 4280 0.235

Data are presented as median and interquartile range.

https://doi.org/10.1371/journal.pone.0292203.t004
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Importantly, altered physiological signals such as decreased heart rate variability and

increased skin temperature have been proposed as prognostic markers for several disorders,

including cardiovascular disease [40] as well as infectious diseases like COVID-19 [18,41–43].

Modern wearable technology represents a unique and powerful framework to collect continu-

ous real-time physiological data. The predictive value of physiological signals combined with

the reliable history of measurements provided by wearables opens up new avenues to inform

clinical actions and support future precision medicine approaches incorporating a variety of

individual factors into clinical decisions (reviewed in Mitratza et al. [44]).

An important step towards precision medicine can be made by considering sex differences

in modern digital health solutions. Historically, women have been underrepresented in clinical

trials, leading to medical solutions focusing on men at the risk to women’s health [45]. Many

diseases differ between female and male patients with regard to the prevalence, progression, or

response to treatment [46]. For example, minor stroke is more often missed in female than

male [47] patients, possibly due to definitions in clinical diagnosis reflecting typical manifesta-

tions in males [43]. More recently, a sex bias has been recognized in modern ML solutions that

are often developed and trained on male data and thus result in better performance in men

[48]. Therefore, in the presented work, we examined sex differences in the performance of our

ML algorithm for early detection of COVID-19. The algorithm reached a higher sensitivity for

female participants. We postulate this difference may be due to the larger sample size in the

female group. However, the algorithm’s precision was the same in both groups, indicating that

it is suitable for use in both men and women, as intended.

Limitations

While our study belongs to the first research to consider sex-based differences in COVID-19

detection using digital health, future work could continue to build upon our findings by exam-

ining the casual mechanism underlying differences between SARS-Cov-2 infected men and

women. In particular, the inability to disentangle immunological versus menstrual-driven

changes in physiological parameters among female participants limits our research’s generaliz-

ability. In menstruating women, a specific pattern has been recognized in the trajectory of

physiological signals across the menstrual cycle, mirroring cycle-based shifts in sex hormones

[27]. Particularly during the follicular phase of the menstrual cycle, decreased skin tempera-

ture, heart rate and breathing rate have been observed, while heart rate variability was

increased. In contrast, the luteal phase was associated with increases in skin temperature, heart

rate and breathing rate as well as decreases in heart rate variability, corresponding to the pat-

tern found in COVID-19 patients. Sex differences in physiological signals measured in the cur-

rent study may thus partly be due to hormonal impact. We cannot exclude such influence as

we had limited information about female participants’ menstrual cycle or reproductive health

(e.g., usage of hormonal birth control menopausal status). Future researchers may wish to

record participants’ menstrual status and measure hormone levels directly, to probe the rela-

tionship between sex hormones and physiological differences.

Nevertheless, we believe that menses-driven changes in physiology do not adequately

explain the sex differences in our results, as the dynamics of the observed physiological signals

are in line with previous reports regarding COVID-19 and include increased skin temperature,

heart rate and breathing rate as well as decreased heart rate variability during infection [20].

Additionally, the most pronounced sex differences in our study occurred during the symptom-

atic period, suggesting a disease-triggered disparity among males and females. Furthermore,

hormonal influence offers a plausible explanation only in the first half of the menstrual cycle.

The physiological changes observed in its second half could only amplify the trajectory found
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during COVID-19 in females and thus mask the sex differences in our study. Moreover, the

magnitude of physiological changes during COVID-19’s symptomatic phase in the current

study is, for all parameters, more than twice as large as the previously reported magnitude of

changes across the menstrual cycle [27]. For example, we found that skin temperature

increases by 0.7 degrees during the symptomatic phase of COVID-19, whereas this measure’s

largest increase during the menstrual cycle is 0.2 degrees during the late luteal phase [27]. Of

note, 30% (n = 17) of females in the sample were older than 45 years; peri- or post-menopausal,

they were beyond natural reproductive age and thus unlikely to experience menses-modulat-

ing effects on their physiological parameters. Finally, we do not expect that the distribution of

menstrual cycle phases follows a specific pattern for our participants (e.g., in complete syn-

chronicity); rather, we expect each eumenorrheic woman to cycle on her own timeline and the

alignment of menstrual phases between participants to occur at random. Taken together, we

believe that the hormonal impact on our findings is minimal.

Another limitation important to note is the potential effect of recall bias on our findings.

The COVID-19 symptom onset date was determined based on the participants’ retrospective

reports, and the classification of the relevant infection periods (i.e., incubation, pre-symptom-

atic and symptomatic period) was based on this date. Therefore, an unreliable report would be

associated with an inaccurate definition of the infection periods leading to shifts in trajectories

of physiological signals. Furthermore, in the effort to smooth the data in the model, the abrupt

changes in physiological signals after infection generated gradual alterations in the estimated

trajectory. The deviations from the baseline during the first and last days may be reflective of

such model artifacts (Fig 2). Finally, it is important to note that we did not adjust any parame-

ters from our statistical tests to account for multiple testing. Therefore, we acknowledge

chances for type 1 error in our findings. Nevertheless, we believe that our research provides

important initial insights to be confirmed in future investigations. Furthermore, upcoming

research should explore the mechanisms behind these sex differences, including the roles of

sex hormones, genetic factors, and immune responses. Finally, the development of sex-specific

treatment strategies, leveraging the insights gained from our study, holds potential for

improved patient care and outcomes.

Conclusion

Our study demonstrates sex differences in physiological responses to COVID-19. The results

highlight the importance of taking sex into account in medical treatment and care of COVID-

19 patients, as well as when validating infection detection algorithms in digital health. More-

over, we reveal the potential of continuous real-time physiological signals as a clinical tool to

inform future precision medicine approaches. Wearable technology, capable of providing a

reliable history of measurements, can empower clinicians with invaluable insights into individ-

ual patient health, enabling more personalized and timely interventions that hold promise for

improved patient outcomes in the fight against COVID-19 and beyond.
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