8 research outputs found

    Histochemical evaluation of induction of somatic embryogenesis in Passiflora edulis Sims (Passifloraceae)

    No full text
    The aim of this study was to describe the accumulation of reserves during the somatic embryogenesis process in Passiflora edulis Sims FB-300, obtained from mature zygotic embryos, using histochemical methods. Mature zygotic embryos were inoculated in Murashige and Skoog induction media supplemented with 31.06 μM of picloram, 2.22 μM of benzyladenine, and 2.27 μM of thidiazuron. The zygotic embryo explants, at different developmental stages, were collected and fixed in Karnovsky solution and subsequently subjected to dehydration in an ethanol series and embedded in acrylic resin. Transverse and longitudinal sections (5-μm thick) were stained with toluidine blue for anatomical characterization, using Xylidine Ponceau for the detection of total protein, periodic acid-Schiff reagent for neutral polysaccharides, Sudan black B to detect lipids, and Lugol’s reagent for the starch detection. Histological sections revealed the formation of protuberances and globular stage somatic embryos in the cotyledonary region of the zygotic embryo. Histochemical tests revealed the presence of large quantities of protein bodies in zygotic embryos of P. edulis, which were gradually metabolized during somatic embryo development. Lipid bodies and starch grains were identified only after 20 d of culture, suggesting the use of these compounds as energy source for de novo synthesis. The present study describes the anatomical changes and the pattern of reserve accumulation during the somatic embryogenesis process in P. edulis

    Histochemical Evaluation Of Induction Of Somatic Embryogenesis In Passiflora Edulis Sims (passifloraceae)

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The aim of this study was to describe the accumulation of reserves during the somatic embryogenesis process in Passiflora edulis Sims FB-300, obtained from mature zygotic embryos, using histochemical methods. Mature zygotic embryos were inoculated in Murashige and Skoog induction media supplemented with 31.06 mu M of picloram, 2.22 mu M of benzyladenine, and 2.27 mu M of thidiazuron. The zygotic embryo explants, at different developmental stages, were collected and fixed in Karnovsky solution and subsequently subjected to dehydration in an ethanol series and embedded in acrylic resin. Transverse and longitudinal sections (5-mu m thick) were stained with toluidine blue for anatomical characterization, using Xylidine Ponceau for the detection of total protein, periodic acid-Schiff reagent for neutral polysaccharides, Sudan black B to detect lipids, and Lugol's reagent for the starch detection. Histological sections revealed the formation of protuberances and globular stage somatic embryos in the cotyledonary region of the zygotic embryo. Histochemical tests revealed the presence of large quantities of protein bodies in zygotic embryos of P. edulis, which were gradually metabolized during somatic embryo development. Lipid bodies and starch grains were identified only after 20 d of culture, suggesting the use of these compounds as energy source for de novo synthesis. The present study describes the anatomical changes and the pattern of reserve accumulation during the somatic embryogenesis process in P. edulis.515539545Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    High responsiveness in de novo shoot organogenesis induction of Passiflora cristalina (Passifloraceae), a wild Amazonian passion fruit species

    No full text
    The aim of the present study was to establish a regeneration system via de novo organogenesis from different types of non-meristematic explants of Passiflora cristalina. Leaf, hypocotyl, root segments, cotyledons, and endosperm of P. cristalina seeds were inoculated in Murashige and Skoog (MS)-basal medium, supplemented with different concentrations of 6-Benzyladenine (BA), Thidiazuron (TDZ), or Kinetin (KIN). BA was found to be the most efficient cytokinin in induction of de novo organogenesis from most the explants used in the study. The highest frequencies of adventitious bud formation in the hypocotyl and cotyledon explants were observed in medium supplemented with 1.0 mg L^−1 BA. For leaf and endosperm segments, the best concentration was 2.0 mg L^−1 BA; while for root segments, the highest mean values were observed with 1.0 mg L^−1 KIN. The different morphogenetic responses obtained from each explant source were characterized using light microscopy. P. cristalina revealed a remarkable organogenic potential, with superior production of adventitious shoots compared with the other Passiflora species evaluated elsewhere. These results will be helpful to establish a reproducible and reliable micropropagation protocol, as well as to implement conservationist and biotechnological-based genetic breeding strategies for this wild Passiflora species
    corecore