355 research outputs found

    Calmodulin disruption impacts growth and motility in juvenile liver fluke

    Get PDF
    BACKGROUND: Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamental processes including the phosphorylation of protein kinases, gene transcription, calcium transport and smooth muscle contraction. In the blood fluke Schistosoma mansoni, calmodulins have been implicated in egg hatching, miracidial transformation and larval development. Previously, CaMs have been identified amongst liver fluke excretory-secretory products and three CaM-like proteins have been characterised biochemically from adult Fasciola hepatica, although their functions remain unknown. METHODS: In this study, we set out to investigate the biological function and control target potential of F. hepatica CaMs (FhCaMs) using RNAi methodology alongside novel in vitro bioassays. RESULTS: Our results reveal that: (i) FhCaMs are widely expressed in parenchymal cells throughout the forebody region of juvenile fluke; (ii) significant transcriptional knockdown of FhCaM1-3 was inducible by exposure to either long (~200 nt) double stranded (ds) RNAs or 27 nt short interfering (si) RNAs, although siRNAs were less effective than long dsRNAs; (iii) transient long dsRNA exposure-induced RNA interference (RNAi) of FhCaMs triggered transcript knockdown that persisted for ≥ 21 days, and led to detectable suppression of FhCaM proteins; (iv) FhCaM RNAi significantly reduced the growth of juvenile flukes maintained in vitro; (v) FhCaM RNAi juveniles also displayed hyperactivity encompassing significantly increased migration; (vi) both the reduced growth and increased motility phenotypes were recapitulated in juvenile fluke using the CaM inhibitor trifluoperazine hydrochloride, supporting phenotype specificity. CONCLUSIONS: These data indicate that the Ca(2+)-modulating functions of FhCaMs are important for juvenile fluke growth and movement and provide the first functional genomics-based example of a growth-defect resulting from gene silencing in liver fluke. Whilst the phenotypic impacts of FhCaM silencing on fluke behaviour do not strongly support their candidature as new flukicide targets, the growth impacts encourage further consideration, especially in light of the speed of juvenile fluke growth in vivo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1324-9) contains supplementary material, which is available to authorized users

    Profiling G protein-coupled receptors of Fasciola hepatica identifies orphan rhodopsins unique to phylum Platyhelminthes

    Get PDF
    G protein-coupled receptors (GPCRs) are established drug targets. Despite their considerable appeal as targets for next-generation anthelmintics, poor understanding of their diversity and function in parasitic helminths has thwarted progress towards GPCR-targeted anti-parasite drugs. This study facilitates GPCR research in the liver fluke, Fasciola hepatica, by generating the first profile of GPCRs from the F. hepatica genome. Our dataset describes 147 high confidence GPCRs, representing the largest cohort of GPCRs, and the largest set of in silico ligand-receptor predictions, yet reported in any parasitic helminth. All GPCRs fall within the established GRAFS nomenclature; comprising three glutamate, 135 rhodopsin, two adhesion, five frizzled, one smoothened, and one secretin GPCR. Stringent annotation pipelines identified 18 highly diverged rhodopsins in F. hepatica that maintained core rhodopsin signatures, but lacked significant similarity with non-flatworm sequences, providing a new sub-group of potential flukicide targets. These facilitated identification of a larger cohort of 76 related sequences from available flatworm genomes, representing new members of existing groups (PROF1/Srfb, Rho-L, Rho-R, Srfa, Srfc) of flatworm-specific rhodopsins. These receptors imply flatworm specific GPCR functions, and/or co-evolution with unique flatworm ligands, and could facilitate the development of exquisitely selective anthelmintics. Ligand binding domain sequence conservation relative to deorphanised rhodopsins enabled high confidence ligand-receptor matching of seventeen receptors activated by acetylcholine, neuropeptide F/Y, octopamine or serotonin. RNA-Seq analyses showed expression of 101 GPCRs across various developmental stages, with the majority expressed most highly in the pathogenic intra-mammalian juvenile parasites. These data identify a broad complement of GPCRs in F. hepatica, including rhodopsins likely to have key functions in neuromuscular control and sensory perception, as well as frizzled and adhesion/secretin families implicated, in other species, in growth, development and reproduction. This catalogue of liver fluke GPCRs provides a platform for new avenues into our understanding of flatworm biology and anthelmintic discovery. Keywords: Anthelmintic, Deorphanization, Flukicide, Genome, Invertebrate, Nervous system, Neuropeptide, RNA-Se

    Unraveling flp-11/flp-32 dichotomy in nematodes

    Get PDF
    AbstractFMRFamide-like peptide (FLP) signalling systems are core to nematode neuromuscular function. Novel drug discovery efforts associated with nematode FLP/FLP receptor biology are advanced through the accumulation of basic biological data that can reveal subtle complexities within the neuropeptidergic system. This study reports the characterisation of FMRFamide-like peptide encoding gene-11 (flp-11) and FMRFamide-like peptide encoding gene-32 (flp-32), two distinct flp genes which encode the analogous peptide, AMRN(A/S)LVRFamide, in multiple nematode species – the only known example of this phenomenon within the FLPergic system of nematodes. Using bioinformatics, in situ hybridisation, immunocytochemistry and behavioural assays we show that: (i) flp-11 and -32 are distinct flp genes expressed individually or in tandem across multiple nematode species, where they encode a highly similar peptide; (ii) flp-11 does not appear to be the most widely expressed flp in Caenorhabditis elegans; (iii) in species expressing both flp-11 and flp-32, flp-11 displays a conserved, restricted expression pattern across nematode clades and lifestyles; (iv) in species expressing both flp-11 and flp-32, flp-32 expression is more widespread and less conserved than flp-11; (v) in species expressing only flp-11, the flp-11 expression profile is more similar to the flp-32 profile observed in species expressing both; and (vi) FLP-11 peptides inhibit motor function in multiple nematode species. The biological significance and evolutionary origin of flp-11 and -32 peptide duplication remains unclear despite attempts to identify a common ancestor; this may become clearer as the availability of genomic data improves. This work provides insight into the complexity of the neuropeptidergic system in nematodes, and begins to examine how nematodes may compensate for structural neuronal simplicity. From a parasite control standpoint, this work underscores the importance of basic biological data, and has wider implications for the utility of C. elegans as a model for parasite neurobiology

    The ability of magnetic field sensors to monitor feeding in three domestic herbivores

    Get PDF
    The rate at which animals ingest food is a fundamental part of animal ecology although it is rarely quantified, with recently-developed animal-attached tags providing a potentially viable approach. However, to date, these methods lack clarity in differentiating various eating behaviours, such as ‘chewing’ from ‘biting’. The aims of this study were to examine the use of inter-mandibular angle sensors (IMASENs), to quantify grazing behaviour in herbivores including cattle (Bos taurus), sheep (Ovis aries) and pygmy goats (Capra aegagrus hircus) eating different foodstuffs. Specifically, we aimed to: (1) quantify jaw movements of each species and determine differences between biting and chewing; (2) assess whether different food types can be discerned from jaw movements; and (3) determine whether species-specific differences in jaw movements can be detected. Subjects were filmed while consuming concentrate, hay, grass and browse to allow comparison of observed and IMASEN-recorded jaw movements. This study shows that IMASENs can accurately detect jaw movements of feeding herbivores, and, based on the rate of jaw movements, can classify biting (taking new material into the mouth) from chewing (masticating material already in the mouth). The biting behaviours associated with concentrate pellets could be identified easily as these occurred at the fastest rate for all species. However, the rates of chewing different food items were more difficult to discern from one another. Comparison of chew:bite ratios of the various food types eaten by each species showed no differences. Species differences could be identified using bite and chew rates. Cattle consistently displayed slower bite and chew rates to sheep and pygmy goats when feeding, while sheep and pygmy goats showed similar bite and chew rates when feeding on concentrate pellets. Species-specific differences in chew:bite ratios were not identified. Magnetometry has the potential to record quantitative aspects of foraging such as the feeding duration, food handling time and food type. This is of major importance for researchers interested in both captive (e.g., agricultural productivity) and wild animal foraging dynamics as it can provide quantitative data with minimal observer interference

    Nematode neuropeptides as transgenic nematicides

    Get PDF
    NDW was supported by a Bill and Melinda Gates Foundation grand challenge exploration grant. LW was supported by a PhD studentship from the EUPHRESCO Plant Health Fellowship Scheme, and an Eaton Visitorship Award. JJD was supported by a Leverhulme Trust early career fellowship and a Bill and Melinda Gates Foundation grand challenge exploration grant.Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars

    Stimulating Neoblast-Like Cell Proliferation in Juvenile Fasciola hepatica Supports Growth and Progression towards the Adult Phenotype In Vitro

    Get PDF
    Fascioliasis (or fasciolosis) is a socioeconomically important parasitic disease caused by liver flukes of the genus Fasciola. Flukicide resistance has exposed the need for new drugs and/or a vaccine for liver fluke control. A rapidly improving 'molecular toolbox' for liver fluke encompasses quality genomic/transcriptomic datasets and an RNA interference platform that facilitates functional genomics approaches to drug/vaccine target validation. The exploitation of these resources is undermined by the absence of effective culture/maintenance systems that would support in vitro studies on juvenile fluke development/biology. Here we report markedly improved in vitro maintenance methods for Fasciola hepatica that achieved 65% survival of juvenile fluke after 6 months in standard cell culture medium supplemented with 50% chicken serum. We discovered that this long-term maintenance was dependent upon fluke growth, which was supported by increased proliferation of cells resembling the "neoblast" stem cells described in other flatworms. Growth led to dramatic morphological changes in juveniles, including the development of the digestive tract, reproductive organs and the tegument, towards more adult-like forms. The inhibition of DNA synthesis prevented neoblast-like cell proliferation and inhibited growth/development. Supporting our assertion that we have triggered the development of juveniles towards adult-like fluke, mass spectrometric analyses showed that growing fluke have an excretory/secretory protein profile that is distinct from that of newly-excysted juveniles and more closely resembles that of ex vivo immature and adult fluke. Further, in vitro maintained fluke displayed a transition in their movement from the probing behaviour associated with migrating stage worms to a slower wave-like motility seen in adults. Our ability to stimulate neoblast-like cell proliferation and growth in F. hepatica underpins the first simple platform for their long-term in vitro study, complementing the recent expansion in liver fluke resources and facilitating in vitro target validation studies of the developmental biology of liver fluke

    Exploring and Expanding the Fatty-Acid-Binding Protein Superfamily in Fasciola Species

    Get PDF
    The liver flukes Fasciola hepatica and F. gigantica infect livestock worldwide and threaten food security with climate change and problematic control measures spreading disease. Fascioliasis is also a food borne disease with up to 17 million humans infected. In the absence of vaccines, treatment depends on Triclabendazole (TCBZ) and over-use has led to widespread resistance, compromising future TCBZ control. Reductionist biology from many laboratories has predicted new therapeutic targets. To this end, the fatty acid binding protein (FABP) superfamily have proposed multi-functional roles, including functions intersecting vaccine and drug therapy, such as immune modulation and anthelmintic sequestration. Research is hindered by a lack of understanding of the full FABP superfamily complement. Although discovery studies predicted FABPs as promising vaccine candidates, it is unclear if uncharacterised FABPs are more relevant for vaccine formulations. We have coupled genome, transcriptome and EST data mining with proteomics and phylogenetics, to reveal a liver fluke FABP superfamily of 7 clades: previously identified clades I-III and newly identified clades IV-VII. All new clade FABPs were analysed using bioinformatics and cloned from both liver flukes. The extended FABP dataset will provide new study tools to research the role of FABPs in parasite biology and as therapy targets

    Ascaris suum informs extrasynaptic volume transmission in nematodes

    Get PDF
    Neural circuit synaptic connectivities (the connectome) provide the anatomical foundation for our understanding of nematode nervous system function. However, other nonsynaptic routes of communication are known in invertebrates including extrasynaptic volume transmission (EVT), which enables short- and/or long-range communication in the absence of synaptic connections. Although EVT has been highlighted as a facet o

    RNAi dynamics in juvenile Fasciola spp. liver flukes reveals the persistence of gene silencing in vitro

    Get PDF
    Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi) has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (ds)RNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain), validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL) and B (FheCatB) cysteine proteases, and a σ-class glutathione transferase (FheσGST).Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200-320 nt) dsRNAs or 27 nt short interfering (si)RNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent) and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively.In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control target validation. RNAi persistence in fluke encourages in vivo studies on gene function using worms exposed to RNAi-triggers prior to infection
    • …
    corecore