475 research outputs found
The ion environment near Europa and its role in surface energetics
This paper gives the composition, energy spectra, and time variability of energetic ions measured just upstream of Europa. From 100 keV to 100 MeV, ion intensities vary by less than a factor of ∼5 among Europa passes considered between 1997 and 2000. We use the data to estimate the radiation dose rate into Europa's surface for depths 0.01 mm – 1 m. We find that in a critical fraction of the upper layer on Europa's trailing hemisphere, energetic electrons are the principal agent for radiolysis, and their bremsstrahlung photon products, not included in previous studies, dominate the dose below about 1 m. Because ion bombardment is more uniform across Europa's surface, the radiation dose on the leading hemisphere is dominated by the proton flux. Differences exist between this calculation and published doses based on the E4 wake pass. For instance, proton doses presented here are much greater below 1 mm
Radiation Belt Storm Probe (RBSP) Mission
Scheduled to launch in May 2012, NASA's dual spacecraft Living With a Star Radiation Belt Storm Probe mission carries the field and particle instrumentation needed to determine the processes that produce enhancements in radiation belt ion and electron fluxes, the dominant mechanisms that cause the loss of relativistic electrons, and the manner by which the ring current and other geomagnetic phenomena affect radiation belt behavior. The two spacecraft will operate in low-inclination elliptical lapping orbits around the Earth, within and immediately exterior to the Van Allen radiation belts. During course of their two year primary mission, they will cover the full range of local times, measuring both AC and DC electric and magnetic fields to 10kHz, as well as ions from 50 eV to 1 GeV and electrons with energies ranging from 50 eV to 10 MeV
The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission
Abstract The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to \u3e0.5 MeV (with capabilities to measure up to \u3e1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to \u3e0.5 MeV, and also measures total ion energy distributions from 45 keV to \u3e0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth’s magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth’s magnetotail during the about 6 months that comprise orbital phase 2
Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis
Abstract We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100-300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially provide the spatiotemporal evolution of global hiss wave intensity, which is essential in evaluating radiation belt electron dynamics, but cannot be obtained by in situ equatorial satellites alone. Key Points Measured and calculated hiss Bw from POES electron measurements agree well Electron ratio measured by POES is able to estimate hiss wave intensity This technique can be used to provide global hiss wave distributio
Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons
Abstract
Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes, and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons
Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes
Abstract Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21-24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L\u3e5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors and the importance of chorus-driven local acceleration even during the nonstorm times
Grant Proposal for the Continuation of the Voyager Interstellar Mission: LECP Investigation
This proposal documents the plans of the Low Energy Charged Particle (LECP) investigation team for participation in NASA's Voyager Interstellar Mission (VIM) as the Voyager 1 and 2 spacecraft explore the outer reaches of the heliosphere and search for the termination shock and the heliopause. The proposal covers the four year period from 1 January 1997 to 31 December 2000. The LECP instruments on Voyager 1 and 2 measure in situ intensities of charged particles with energies from about 30 keV to 100 MeV for ions, and about 20 keV to greater than 10 MeV for electrons. The instruments provide detailed spectral, angular, and compositional information about the particles. Composition is available for greater than 200 keV/nuc using multi-parameter measurements. Angular information is obtained by a mechanically scanned platform that rotates at various commanded rates. Measurements of low energy ion and electron intensities versus time and spatial location within the heliosphere contain an abundance of information regarding various transport and acceleration processes on both local (approx. 1 hr, approx. 0.01 AU) and global (approx. 11 yrs, approx. 100 AU) scales. The LECP instruments provide unique observations of such dynamical processes, and we anticipate that it will return critical information regarding the boundaries of the heliosphere. Several recent and exciting discoveries based on LECP measurements emphasize the important role that low energy charged particle distributions play in physical processes in the interplanetary medium. Yet, at the same time, these discoveries also underscore the fact that our understanding of processes in the outer heliosphere is, in most cases, incomplete, and in others, only rudimentary at best. Among the discoveries referred to above are the following: (1) Shocks: Examination of greater than 30 keV ion intensities have revealed: (a) a total absence of acceleration beyond only -100-200 keV at a strong transient shock in May 1991 at 35 AU, despite an enhanced level of seed particles; (b) a large transient shock in September 1991 of global scale, with intensities of shock-accelerated ions greater than or equal to 30 keV to approx. 30 MeV showing complex, highly energy-dependent spatial evolution, and small-scale (approx. few gyroradii), often anisotropic, micro-structures; (c) recurrent intensity increases in greater than or equal to 30 keV to -few MeV ions, with structures that, in some cases, show no correlation with the associated corotating shock. (2) Superthermal ion pressure: A global merged interaction region with a leading shock, downstream of which the superthermal ion (greater than or equal to 30 keV to approx. 4 MeV) pressure is comparable to that of the thermal plasma, and the total particle pressure yields a plasma beta of order unity. (3) Pickup ions: Measurements of the C/O ratio within transient structures at 35-45 AU showing the first clear evidence that transient shocks can pre-accelerate interstellar pickup ions from approx. 1 keV/nuc to at least 1 MeV/nuc. (4) Seed particles: Injection of ions for acceleration to high energies at the termination shock is unlikely to be a problem, since interplanetary transient and recurrent shocks are continually accelerating ions, of solar wind or interstellar origin, to highly superthermal energies. (5) Precursor electrons: Ambient solar electrons (greater than or equal to few tens of keV) that exist in the outer heliosphere ca form a broad precursor, several days wide, that is upstream of the termination shock and potentially observable a few months prior to the shock crossing. (6) Solar wind velocity at Voyager 1: We can use LECP ion data to obtain the solar wind velocity at Voyager 1, enabling us to provide critical measurement of the plasma flow as we approach and encounter the termination shock and other regions (necessary due to the partial failure of the Voyager 1 PLS experiment). The work of the LECP investigator team during the VIM will include: (1) Continuing operations with regard to the receipt, processing, verification, cataloging, display, and distribution of the data from the LECP instruments on Voyager 1 and 2, (2) Monitoring the health and performance of the LECP instruments, and evaluating and characterizing the response of the LECP instruments to various energetic particle and plasma environments, (3) Participating in, and supporting Voyager Project planning exercises and other coordinated activities relevant to exploration of the outer heliosphere, (4) Developing analysis techniques and operational procedures suitable for searching for and characterizing the boundaries and unique regions of the outher heliosphere, (5) Continuing the preparation of data sets appropriate for submission to the National Space Sciences Data Center (NSSDC) and, where appropriate, the Planetary Data System (PDS), (6) Maintaining direct Web access to online LECP data through the JHU/APL Voyager LECP home page, (7) Performing scientific evaluations of the Voyager 1 and 2 LECP data sets in conjunction with other data sets and other investigators, with particular focus on the outer regions of the heliosphere, and (8) Publishing the results of these evaluations in the scientific literature and presenting the results in scientific conferences
JUPITER's AURORAL RADIO SPECTRUM
Juno's first perijove science observations were carried out on 27 August 2016. The 90° orbit inclination and 4163 km periapsis altitude provide the first opportunity to explore Jupiter's polar magnetosphere. A radio and plasma wave instrument on Juno called Waves provided a new view of Jupiter's auroral radio emissions from near 10 kHz to ~30 MHz. This frequency range covers the classically named decametric, hectometric, and broadband kilometric radio emissions, and Juno observations showed much of this entire spectrum to consist of V-shaped emissions in frequency-time space with intensified vertices located very close to the electron cyclotron frequency. The proximity of the radio emissions to the cyclotron frequency along with loss cone features in the energetic electron distribution strongly suggests that Juno passed very close to, if not through, one or more of the cyclotron maser instability sources thought to be responsible for Jupiter's auroral radio emissions
Disappearance of plasmaspheric hiss following interplanetary shock
Abstract Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss
- …