921 research outputs found

    Observation of cosmic ray positrons from 5 to 25 GeV

    Get PDF
    The positron data gathered in conjunction with electron data published elsewhere is reported. The basic recognition scheme was to look for low mass positive particles that cause a cascade in a 7 radiation length shower counter. The mass criteria is imposed by selecting particles that were accompanied by Cherenkov light but whose rigidity was below the proton Cherenkov threshold. Thus the proton Cherenkov threshold represents an upper limit to the range of the experiment

    Absence of long-range chemical ordering in equimolar FeCoCrNi

    Get PDF
    Equimolar FeCoCrNi alloys have been the topic of recent research as "high-entropy alloys," where the name is derived from the high configurational entropy of mixing for a random solid solution. Despite their name, no systematic study of ordering in this alloy system has been performed to date. Here, we present results from anomalous x-ray scattering and neutron scattering on quenched and annealed samples. An alloy of FeNi_3 was prepared in the same manner to act as a control. Evidence of long-range chemical ordering is clearly observed in the annealed FeNi_3 sample from both experimental techniques. The FeCoCrNi sample given the same heat treatment lacks long-range chemical order

    Mass resolution optimization in a large isotopic composition experiment

    Get PDF
    A range-energy experiment was built to measure the isotopic composition of galactic cosmic rays. An enrichment of neutron rich isotopes, 22Ne and (25Mg + 26Mg) in particular, when compared to the solar composition is shown. A rich statistics measurement of these and other neutron-rich isotopes in the galactic flux yields information to the source of these particles. A computer simulation of the experiment was used to estimate the instrument resolution. The Cherenkov detector light collection efficiency, was calculated. Absorption of light in the radiator was considered to determine the optimum Cherenkov medium thickness. The experiment will determine the isotopic composition for the elements neon through argon in the energy range 300 to 800 MeV per nucleon

    Magnetic susceptibility of EuTe/PbTe Heisenberg superlattices: experimental and theoretical studies

    Full text link
    We report results on the temperature dependence of the susceptibilities of a set of MBE-grown short-period EuTe/PbTe antiferromagnetic superlattices having different EuTe layer thicknesses. In-plane and orthogonal susceptibilities have been measured and display a strong anisotropy at low temperature, confirming the occurrence of a magnetic phase transition in the thicker samples, as seen also in neutron diffraction studies. We suggest that dipolar interactions stabilize antiferromagnetic long-range order in an otherwise isotropic system and we present numerical and analytical results for the low-temperature orthogonal susceptibility.Comment: 30 pages, 8 ps figures, RevTe

    Spin Glass Ordering in Diluted Magnetic Semiconductors: a Monte Carlo Study

    Get PDF
    We study the temperature-dilution phase diagram of a site-diluted Heisenberg antiferromagnet on a fcc lattice, with and without the Dzyaloshinskii-Moriya anisotropic term, fixed to realistic microscopic parameters for IIB1−xMnxTeIIB_{1-x} Mn_x Te (IIB=Cd, Hg, Zn). We show that the dipolar Dzyaloshinskii-Moriya anisotropy induces a finite-temperature phase transition to a spin glass phase, at dilutions larger than 80%. The resulting probability distribution of the order parameter P(q) is similar to the one found in the cubic lattice Edwards-Anderson Ising model. The critical exponents undergo large finite size corrections, but tend to values similar to the ones of the Edwards-Anderson-Ising model.Comment: 4 pages plus 3 postscript figure

    Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting

    Full text link
    We present the direct measurements of electric-dipole moments for 5P3/2→nD5/25P_{3/2}\to nD_{5/2} transitions with 20<n<4820<n<48 for Rubidium atoms. The measurements were performed in an ultracold sample via observation of the Autler-Townes splitting in a three-level ladder scheme, commonly used for 2-photon excitation of Rydberg states. To the best of our knowledge, this is the first systematic measurement of the electric dipole moments for transitions from low excited states of rubidium to Rydberg states. Due to its simplicity and versatility, this method can be easily extended to other transitions and other atomic species with little constraints. Good agreement of the experimental results with theory proves the reliability of the measurement method.Comment: 12 pages, 6 figures; figure 6 replaced with correct versio

    Reliability and Validity of a Self-paced Cardiopulmonary Exercise Test in Post-MI Patients

    Get PDF
    A self-paced peak oxygen uptake (V?O2peak) test (SPV) has been shown to produce higher V?O2peak values compared to standard cardiopulmonary exercise tests (sCPET), but has not been tested on any clinical population. This study aimed to assess the reliability of the SPV in a healthy population (study 1), and the validity and reliability of the SPV in post Myocardial Infarction (post-MI) patients (study 2). For study 1, twenty-five healthy participants completed three SPV’s. For study 2, twenty-eight post-MI patients completed one sCPET and two SPV’s. The SPV consisted of 5 x 2- min stages where participants were able to self-regulate their effort by using incremental ‘clamps’ in ratings of perceived exertion. The sCPET consisted of a 20 W/min ramp. Results demonstrated the SPV to have a coefficient of variation for V?O2peak of 4.7% for the healthy population, and 8.2% for the post-MI patients. Limits of agreement ranged between ± 4.22-5.86 ml·kg-1·min-1, with the intraclass correlation coefficient ranging between 0.89-0.95. In study 2, there was a significantly higher V?O2peak achieved in the SPV (23.07 ± 4.90 ml·kg-1·min-1) against the sCPET (21.29 ± 4.93 ml·kg-1·min-1). It is concluded that these results provide initial evidence that the SPV may be a safe, valid and reliable method for determining exercise capacity in post-MI patients

    A Letter of Intent to Build a MiniBooNE Near Detector: BooNE

    Full text link
    There is accumulating evidence for a difference between neutrino and antineutrino oscillations at the ∌1\sim 1 eV2^2 scale. The MiniBooNE experiment observes an unexplained excess of electron-like events at low energies in neutrino mode, which may be due, for example, to either a neutral current radiative interaction, sterile neutrino decay, or to neutrino oscillations involving sterile neutrinos and which may be related to the LSND signal. No excess of electron-like events (−0.5±7.8±8.7-0.5 \pm 7.8 \pm 8.7), however, is observed so far at low energies in antineutrino mode. Furthermore, global 3+1 and 3+2 sterile neutrino fits to the world neutrino and antineutrino data suggest a difference between neutrinos and antineutrinos with significant (sin⁥22ΞΌΌ∌35\sin^22\theta_{\mu \mu} \sim 35%) ΜˉΌ\bar \nu_\mu disappearance. In order to test whether the low-energy excess is due to neutrino oscillations and whether there is a difference between ΜΌ\nu_\mu and ΜˉΌ\bar \nu_\mu disappearance, we propose building a second MiniBooNE detector at (or moving the existing MiniBooNE detector to) a distance of ∌200\sim 200 m from the Booster Neutrino Beam (BNB) production target. With identical detectors at different distances, most of the systematic errors will cancel when taking a ratio of events in the two detectors, as the neutrino flux varies as 1/r21/r^2 to a calculable approximation. This will allow sensitive tests of oscillations for both Îœe\nu_e and Μˉe\bar \nu_e appearance and ΜΌ\nu_\mu and ΜˉΌ\bar \nu_\mu disappearance. Furthermore, a comparison between oscillations in neutrino mode and antineutrino mode will allow a sensitive search for CP and CPT violation in the lepton sector at short baseline (Δm2>0.1\Delta m^2 > 0.1 eV2^2).Comment: 43 pages, 40 figure

    Epitaxial and layer-by-layer growth of EuO thin films on yttria-stabilized cubic zirconia (001) using MBE distillation

    Full text link
    We have succeeded in growing epitaxial and highly stoichiometric films of EuO on yttria-stabilized cubic zirconia (YSZ) (001). The use of the Eu-distillation process during the molecular beam epitaxy assisted growth enables the consistent achievement of stoichiometry. We have also succeeded in growing the films in a layer-by-layer fashion by fine tuning the Eu vs. oxygen deposition rates. The initial stages of growth involve the limited supply of oxygen from the YSZ substrate, but the EuO stoichiometry can still be well maintained. The films grown were sufficiently smooth so that the capping with a thin layer of aluminum was leak tight and enabled ex situ experiments free from trivalent Eu species. The findings were used to obtain recipes for better epitaxial growth of EuO on MgO (001).Comment: 10 pages, 15 figure
    • 

    corecore